Schrödinger cat state formation in small bosonic Josephson junctions at finite temperatures and dissipation

In this work, we consider the feasibility of Schrödinger cat (SC) and N00N states formation by a convenient bosonic Josephson junction system in two-mode approximation. Starting with purely quantum description of two-mode Bose–Einstein condensate we investigate the effective potential approach that provides an accurate analytical description for the system with a large number of particles. We show that in the zero temperature limit SC states result from a quantum phase transition that occurs when the nonlinear strength becomes comparable with the Josephson coupling parameter. The Wigner function approach demonstrates the growth of the SC state halves separation and formation of N00N -like states (a Fock state superposition) with the particle number increase. We examine the possibility to attain the SC state at finite temperatures and a weak dissipation leading to appearing of some critical temperature; it defines the second-order phase transition from classical activation process to the SC state formation through the quantum tunneling phenomenon. Numerical estimations demonstrate that the critical temperature is sufficiently below the temperature of atomic condensation. The results obtained may be useful for experimental observation of SC states with small condensate Josephson junctions.

[1]  A. Alodjants,et al.  Mesoscopic quantum superposition states of weakly-coupled matter-wave solitons , 2020, New Journal of Physics.

[2]  S. Girvin,et al.  Stabilization and operation of a Kerr-cat qubit , 2020, Nature.

[3]  F. Nori,et al.  Probing dynamical phase transitions with a superconducting quantum simulator , 2019, Science Advances.

[4]  A. Alodjants,et al.  Nonlinear quantum metrology with moving matter-wave solitons , 2019, New Journal of Physics.

[5]  Olivier Pfister,et al.  Gottesman-Kitaev-Preskill state preparation by photon catalysis. , 2019, 1903.01925.

[6]  N. An,et al.  Efficient production of large-size optical Schrödinger cat states , 2019, Scientific Reports.

[7]  G. Rempe,et al.  Deterministic creation of entangled atom–light Schrödinger-cat states , 2018, Nature Photonics.

[8]  Tien-Chang Lu,et al.  Exciton-polariton Josephson junctions at finite temperatures , 2017, Scientific Reports.

[9]  J. D. Wong-Campos,et al.  Ultrafast creation of large Schrödinger cat states of an atom , 2016, Nature Communications.

[10]  A. I. Lvovsky,et al.  Enlargement of optical Schrödinger's cat states , 2016, Nature Photonics.

[11]  J. Dowling Exploring the Quantum: Atoms, Cavities, and Photons. , 2014 .

[12]  I. Roditi,et al.  Quantum phase transitions in Bose–Einstein condensates from a Bethe ansatz perspective , 2012, 1204.5790.

[13]  A. Ferris,et al.  Demonstrating mesoscopic superpositions in double-well Bose-Einstein condensates , 2009, 0907.1333.

[14]  J. Dowling Quantum optical metrology – the lowdown on high-N00N states , 2008, 0904.0163.

[15]  Philippe Grangier,et al.  Generation of optical ‘Schrödinger cats’ from photon number states , 2007, Nature.

[16]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 2005, Naturwissenschaften.

[17]  P. Kok,et al.  Quantum lithography, entanglement and Heisenberg-limited parameter estimation , 2004, quant-ph/0402083.

[18]  L. Carr,et al.  Formation of a Matter-Wave Bright Soliton , 2002, Science.

[19]  P. Knight,et al.  Quantum superpositions and Schrödinger cat states in quantum optics , 1997 .

[20]  H. M. Gibbs,et al.  Picosecond all‐optical switching in single‐mode GaAs/AlGaAs strip‐loaded nonlinear directional couplers , 1988 .

[21]  A. Leggett Schrödinger's cat and her laboratory cousins , 2009 .

[22]  M. Scully,et al.  Distribution functions in physics: Fundamentals , 1984 .

[23]  I. Malkin,et al.  EVEN AND ODD COHERENT STATES AND EXCITATIONS OF A SINGULAR OSCILLATOR , 1974 .

[24]  H. Lipkin,et al.  VALIDITY OF MANY-BODY APPROXIMATION METHODS FOR A SOLVABLE MODEL. III. DIAGRAM SUMMATIONS , 1965 .