Exciton splitting and carrier transport across the amorphous-silicon/polymer solar cell interface

The authors study exciton splitting at the interface of bilayer hybrid solar cells to better understand the physics controlling organic-inorganic device performance. Hydrogenated amorphous silicon (a-Si:H)∕poly(3-hexylthiophene) (P3HT) and a-Si:H∕poly(2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylenevinylene) (MEH-PPV) solar cells show photoresponse dominated by exciton production in the polymer. The a-Si:H∕P3HT devices are nearly as efficient as titania/P3HT cells. However, the a-Si:H∕MEH-PPV system has much lower photocurrent than a-Si:H∕P3HT, likely due to inefficient hole transfer back to the MEH-PPV after energy transfer from MEH-PPV to a-Si:H.

[1]  Natalya Tokranova,et al.  Hybrid solar cells based on porous Si and copper phthalocyanine derivatives , 2004 .

[2]  C. Hawker,et al.  Fabrication of densely packed, well-ordered, high-aspect-ratio silicon nanopillars over large areas using block copolymer lithography , 2006 .

[3]  S. Carter,et al.  Charge transport inTiO2/MEH−PPVpolymer photovoltaics , 2001 .

[4]  W. Eccleston,et al.  Mater. Res. Soc. Symp. Proc. , 2006 .

[5]  E. Schiff Low-mobility solar cells: a device physics primer with application to amorphous silicon , 2003 .

[6]  K. Guarini,et al.  Process integration of self-assembled polymer templates into silicon nanofabrication , 2002 .

[7]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[8]  F Garnier Hybrid organic-on-inorganic photovoltaic devices , 2002 .

[9]  Qi Wang,et al.  Conducting polymer and hydrogenated amorphous silicon hybrid solar cells , 2005 .

[10]  Michael D. McGehee,et al.  Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania , 2003 .

[11]  T. Főrster,et al.  10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation , 1959 .

[12]  Michael D. McGehee,et al.  Effects of optical interference and energy transfer on exciton diffusion length measurements in organic semiconductors , 2006 .

[13]  S. Shaheen,et al.  Dependence of band offset and open-circuit voltage on the interfacial interaction between TiO2 and carboxylated polythiophenes. , 2006, The journal of physical chemistry. B.

[14]  Jacques I. Pankove,et al.  HYDROGENATED AMORPHOUS SILICON , 1980 .

[15]  P. C. Chui,et al.  Influence of solvent on film morphology and device performance of poly(3-hexylthiophene):TiO2 nanocomposite solar cells , 2004 .

[16]  R. Street,et al.  Hydrogenated amorphous silicon: Index , 1991 .

[17]  Ifor D. W. Samuel,et al.  Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers , 1995 .

[18]  M. Summers,et al.  Using Resonance Energy Transfer to Improve Exciton Harvesting in Organic–Inorganic Hybrid Photovoltaic Cells , 2005 .

[19]  N S Lewis,et al.  Thin Films of n-Si/Poly-(CH3)3Si-Cyclooctatetraene: Conducting-Polymer Solar Cells and Layered Structures , 1990, Science.