Non-backtracking PageRank

AbstractThe PageRank algorithm, which has been “bringing order to the web” for more than 20 years, computes the steady state of a classical random walk plus teleporting. Here we consider a variation of PageRank that uses a non-backtracking random walk. To do this, we first reformulate PageRank in terms of the associated line graph. A non-backtracking analog then emerges naturally. Comparing the resulting steady states, we find that, even for undirected graphs, non-backtracking generally leads to a different ranking of the nodes. We then focus on computational issues, deriving an explicit representation of the new algorithm that can exploit structure and sparsity in the underlying network. Finally, we assess effectiveness and efficiency of this approach on some real-world networks.

[1]  Peter Grindrod,et al.  The Deformed Graph Laplacian and Its Applications to Network Centrality Analysis , 2018, SIAM J. Matrix Anal. Appl..

[2]  Tatsuro Kawamoto,et al.  Localized eigenvectors of the non-backtracking matrix , 2015, 1505.07543.

[3]  Tina Eliassi-Rad,et al.  Graph Distance from the Topological View of Non-backtracking Cycles , 2018, ArXiv.

[4]  David F. Gleich,et al.  PageRank beyond the Web , 2014, SIAM Rev..

[5]  V. Latora,et al.  Centrality in networks of urban streets. , 2006, Chaos.

[6]  S. Sodin Random matrices, nonbacktracking walks, and orthogonal polynomials , 2007, math-ph/0703043.

[7]  Florent Krzakala,et al.  Spectral Clustering of graphs with the Bethe Hessian , 2014, NIPS.

[8]  M. Horton Ihara zeta functions of digraphs , 2007 .

[9]  Audry Terras What are zeta functions of graphs and what are they good for ? , 2005 .

[10]  A. Terras,et al.  Zeta Functions of Finite Graphs and Coverings , 1996 .

[11]  Xiao Zhang,et al.  Localization and centrality in networks , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Gianna M. Del Corso,et al.  Fast PageRank Computation via a Sparse Linear System , 2005, Internet Math..

[13]  Hernán A. Makse,et al.  Influence maximization in complex networks through optimal percolation , 2015, Nature.

[14]  橋本 喜一朗,et al.  Automorphic forms and geometry of arithmetic varieties , 1989 .

[15]  Elchanan Mossel,et al.  Spectral redemption in clustering sparse networks , 2013, Proceedings of the National Academy of Sciences.

[16]  David F. Gleich,et al.  Random Alpha PageRank , 2009, Internet Math..

[17]  N. Alon,et al.  Non-backtracking random walks mix faster , 2006, math/0610550.

[18]  Robert Shorten,et al.  Traffic modelling framework for electric vehicles , 2012, Int. J. Control.

[19]  A. Terras,et al.  Zeta functions of finite graphs and coverings, III , 1996 .

[20]  Kenji Fukumizu,et al.  Graph Zeta Function in the Bethe Free Energy and Loopy Belief Propagation , 2009, NIPS.

[21]  J. Friedman,et al.  THE NON-BACKTRACKING SPECTRUM OF THE UNIVERSAL COVER OF A GRAPH , 2007, 0712.0192.

[22]  Carl D. Meyer,et al.  Deeper Inside PageRank , 2004, Internet Math..

[23]  Andrei Tarfulea,et al.  An Ihara formula for partially directed graphs , 2009 .

[24]  A. Terras Harmonic Analysis on Symmetric Spaces―Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane , 2013 .

[25]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[26]  K. Hashimoto Zeta functions of finite graphs and representations of p-adic groups , 1989 .

[27]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[28]  Ilse C. F. Ipsen,et al.  Convergence Analysis of a PageRank Updating Algorithm by Langville and Meyer , 2005, SIAM J. Matrix Anal. Appl..

[29]  Mark Kempton Non-backtracking random walks and a weighted Ihara's theorem , 2016, 1603.05553.

[30]  Romualdo Pastor-Satorras,et al.  Distinct types of eigenvector localization in networks , 2015, Scientific Reports.

[31]  Peter Grindrod,et al.  Non-backtracking walk centrality for directed networks , 2018, J. Complex Networks.

[32]  Ilse C. F. Ipsen,et al.  Ordinal Ranking for Google's PageRank , 2008, SIAM J. Matrix Anal. Appl..

[33]  Uzy Smilansky,et al.  Quantum chaos on discrete graphs , 2007, 0704.3525.

[34]  Robert Shorten,et al.  A Google-like model of road network dynamics and its application to regulation and control , 2011, Int. J. Control.