On sparse recovery using finite Gaussian matrices: Rip-based analysis

We provide a probabilistic framework for the analysis of the restricted isometry constants (RICs) of finite dimensional Gaussian measurement matrices. The proposed method relies on the exact distribution of the extreme eigenvalues of Wishart matrices, or on its approximation based on the gamma distribution. In particular, we derive tight lower bounds on the cumulative distribution functions (CDFs) of the RICs. The presented framework provides the tightest lower bound on the maximum sparsity order, based on sufficient recovery conditions on the RICs, which allows signal reconstruction with a given target probability via different recovery algorithms.

[1]  Andrea Giorgetti,et al.  Analysis of the Restricted Isometry Property for Gaussian Random Matrices , 2014, 2015 IEEE Global Communications Conference (GLOBECOM).

[2]  David L. Donoho,et al.  Precise Undersampling Theorems , 2010, Proceedings of the IEEE.

[3]  Anru Zhang,et al.  Sharp RIP bound for sparse signal and low-rank matrix recovery , 2013 .

[4]  Marco Chiani,et al.  On the probability that all eigenvalues of Gaussian and Wishart random matrices lie within an interval. , 2015 .

[5]  Jared Tanner,et al.  Bounds of restricted isometry constants in extreme asymptotics: formulae for Gaussian matrices , 2012, ArXiv.

[6]  IEEE Statistical Signal Processing Workshop, SSP 2012, Ann Arbor, MI, USA, August 5-8, 2012 , 2012, Symposium on Software Performance.

[7]  Holger Rauhut,et al.  A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.

[8]  A. Edelman Eigenvalues and condition numbers of random matrices , 1988 .

[9]  D. Donoho For most large underdetermined systems of linear equations the minimal 𝓁1‐norm solution is also the sparsest solution , 2006 .

[10]  Jeffrey D. Blanchard,et al.  On Support Sizes of Restricted Isometry Constants , 2010 .

[11]  Jared Tanner,et al.  Explorer Compressed Sensing : How Sharp Is the Restricted Isometry Property ? , 2011 .

[12]  Jared Tanner,et al.  Phase Transitions for Greedy Sparse Approximation Algorithms , 2010, ArXiv.

[13]  Marco Chiani,et al.  Distribution of the largest eigenvalue for real Wishart and Gaussian random matrices and a simple approximation for the Tracy-Widom distribution , 2012, J. Multivar. Anal..

[14]  S. Foucart,et al.  Sparsest solutions of underdetermined linear systems via ℓq-minimization for 0 , 2009 .

[15]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[16]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[17]  Jared Tanner,et al.  Improved Bounds on Restricted Isometry Constants for Gaussian Matrices , 2010, SIAM J. Matrix Anal. Appl..

[18]  M. Rudelson,et al.  On sparse reconstruction from Fourier and Gaussian measurements , 2008 .

[19]  Simon Foucart,et al.  Hard Thresholding Pursuit: An Algorithm for Compressive Sensing , 2011, SIAM J. Numer. Anal..