Uncertainty of shape memory alloy micro-actuator using generalized polynomial chaos method

In last decades, there has been an increasing interest in the use of micromachining technology. Intelligent materials such as shape memory alloy are considered for the design of micro-actuators. It is worth mentioning that the numerical study of such actuator without taking into account the uncertainties of different parameters has shown a great attention. Nevertheless, material parameters can suffer from a lack of accuracy due to the experiment measurement of these parameters. As a result, this paper proposes a methodology for considering uncertainty in a shape memory alloy materiel for a micro-pump actuator. The proposed approach is used in order to determine the response of this micro device with uncertainty related to material parameters. The simulation results are obtained by the generalized Polynomial Chaos (gPC) method for the response of such actuator under uncertainty. The proposed technique is an efficient probabilistic tool for uncertainty propagation. It is well shown that the gPC technique is an attractive alternative to the parametric studies. For more accuracy, the generalized Polynomial Chaos results are compared with Monte Carlo simulation.

[1]  Gianluca Iaccarino,et al.  Padé-Legendre approximants for uncertainty analysis with discontinuous response surfaces , 2009, J. Comput. Phys..

[2]  Aleksandar Subic,et al.  Shape Memory Alloys in Automotive Applications , 2014 .

[3]  Steffen Marburg,et al.  Uncertainty quantification in natural frequencies and radiated acoustic power of composite plates: Analytical and experimental investigation , 2015 .

[4]  Federica Caselli,et al.  A new SMA shell element based on the corotational formulation , 2014 .

[5]  Y. Marzouk,et al.  Uncertainty quantification in chemical systems , 2009 .

[6]  H. Kahn,et al.  Thin-film shape-memory alloy actuated micropumps , 1998 .

[7]  Asim Nisar,et al.  MEMS-based micropumps in drug delivery and biomedical applications , 2008 .

[8]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[9]  Yves Bellouard,et al.  Shape memory alloys for microsystems: A review from a material research perspective , 2008 .

[10]  R. Wood,et al.  A novel low-profile shape memory alloy torsional actuator , 2010 .

[11]  Arnaud Duval,et al.  Finite Element analysis of a shape memory alloy actuator for a micropump , 2012, Simul. Model. Pract. Theory.

[12]  Charbel Farhat,et al.  Strain and stress computations in stochastic finite element methods , 2008 .

[13]  T. Fakhfakh,et al.  A polynomial chaos method for the analysis of the dynamic behavior of uncertain gear friction system , 2016 .

[14]  Steffen Marburg,et al.  Stochastic analysis of base-isolated liquid storage tanks with uncertain isolator parameters under random excitation , 2013 .

[15]  Adrian Sandu,et al.  Modeling Multibody Systems with Uncertainties. Part I: Theoretical and Computational Aspects , 2006 .

[16]  F. Migliavacca,et al.  Biomedical Applications of Shape Memory Alloys , 2011 .

[17]  B. Kuila,et al.  Block copolymer–small molecule supramolecular assembly in thin film: a novel tool for surface patterning of different functional nanomaterials , 2011 .

[18]  Mohamed Haddar,et al.  Dynamic behaviour of a wind turbine gear system with uncertainties , 2016 .

[19]  Mohamed Haddar,et al.  Reliability based design optimization of coupled acoustic-structure system using generalized polynomial chaos , 2017 .

[20]  Mohamed Haddar,et al.  A perturbation approach for the dynamic analysis of one stage gear system with uncertain nnparameters , 2015 .

[21]  Cees Bil,et al.  Wing morphing control with shape memory alloy actuators , 2013 .

[22]  Alfred Ludwig,et al.  Micro- to Nanostructured Devices for the Characterization of Scaling Effects in Shape-Memory Thin Films , 2010, Journal of Microelectromechanical Systems.

[23]  M Hülsmann,et al.  A comparative study of root canal preparation with NiTi-TEE and K3 rotary Ni-Ti instruments. , 2006, International endodontic journal.

[24]  A. Sarkar,et al.  Mid-frequency structural dynamics with parameter uncertainty , 2001 .

[25]  Mohammad Mahdi Kheirikhah,et al.  A Review of Shape Memory Alloy Actuators in Robotics , 2010, RoboCup.

[26]  Manfred Kohl,et al.  Shape Memory Microactuators , 2004 .

[27]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[28]  M. Eldred Recent Advances in Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Analysis and Design , 2009 .

[29]  Bruno Sudret,et al.  Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach , 2008 .

[30]  Dirk Biermann,et al.  Achieving Small Structures in Thin NiTi Sheets for Medical Applications with Water Jet and Micro Machining: A Comparison , 2011, Journal of Materials Engineering and Performance.

[31]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[32]  H. Kahn,et al.  A titanium-nickel shape-memory alloy actuated micropump , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[33]  Gangbing Song,et al.  Applications of shape memory alloys in civil structures , 2006 .

[34]  Steffen Marburg,et al.  Stochastic free vibration of orthotropic plates using generalized polynomial chaos expansion , 2012 .

[35]  Shuichi Miyazaki,et al.  SMA microgripper with integrated antagonism , 2000 .

[36]  Steffen Marburg,et al.  UNCERTAINTY QUANTIFICATION IN STOCHASTIC SYSTEMS USING POLYNOMIAL CHAOS EXPANSION , 2010 .

[37]  W. Huang,et al.  Stimulus-responsive shape memory materials: A review , 2012 .

[38]  M. Haddar,et al.  Numerical modelling of vibro-acoustic problem in presence of uncertainty: Application to a vehicle cabin , 2017, Applied Acoustics.

[39]  Lyes Nechak,et al.  Robust analysis of uncertain dynamic systems: combination of the centre manifold and polynomial chaos theories , 2010 .

[40]  Stephanus Büttgenbach,et al.  Batch fabrication of micro grippers with integrated actuators , 2008 .

[41]  Wenzhong Yan,et al.  Experimental investigation on the vibration tuning of a shell with a shape memory alloy ring , 2015 .

[42]  Jean-Yves Dantan,et al.  Statistical tolerance analysis of bevel gear by tooth contact analysis and Monte Carlo simulation , 2007 .

[43]  N. Wiener The Homogeneous Chaos , 1938 .

[44]  Adrian Sandu,et al.  Stochastic Modeling of Terrain Profiles and Soil Parameters , 2005 .

[45]  Lyes Nechak,et al.  A polynomial chaos approach to the robust analysis of the dynamic behaviour of friction systems , 2011 .

[46]  O. L. Maître,et al.  Uncertainty propagation in CFD using polynomial chaos decomposition , 2006 .

[47]  Pol D. Spanos,et al.  A multiscale Monte Carlo finite element method for determining mechanical properties of polymer nanocomposites , 2008 .

[48]  Wei Min Huang,et al.  Micro NiTi–Si cantilever with three stable positions , 2004 .