Enhancing Solar Cell Efficiency Using Photon Upconversion Materials

Photovoltaic cells are able to convert sunlight into electricity, providing enough of the most abundant and cleanest energy to cover our energy needs. However, the efficiency of current photovoltaics is significantly impeded by the transmission loss of sub-band-gap photons. Photon upconversion is a promising route to circumvent this problem by converting these transmitted sub-band-gap photons into above-band-gap light, where solar cells typically have high quantum efficiency. Here, we summarize recent progress on varying types of efficient upconversion materials as well as their outstanding uses in a series of solar cells, including silicon solar cells (crystalline and amorphous), gallium arsenide (GaAs) solar cells, dye-sensitized solar cells, and other types of solar cells. The challenge and prospect of upconversion materials for photovoltaic applications are also discussed.

[1]  N. Yanai,et al.  Metallonaphthalocyanines as triplet sensitizers for near-infrared photon upconversion beyond 850 nm. , 2015, Physical chemistry chemical physics : PCCP.

[2]  O. Morton Solar energy: A new day dawning?: Silicon Valley sunrise , 2006, Nature.

[3]  Juan Bisquert,et al.  Dilemmas of dye-sensitized solar cells. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[4]  Maxwell J. Crossley,et al.  Improving the light-harvesting of amorphous silicon solar cells with photochemical upconversion , 2012 .

[5]  Yongsheng Chen,et al.  Er3+–Yb3+ co-doped TeO2–PbF2 oxyhalide tellurite glasses for amorphous silicon solar cells , 2014 .

[6]  H. Goesmann,et al.  Nanoparticulate functional materials. , 2010, Angewandte Chemie.

[7]  S. Ivanova,et al.  Strong 1.53 μm to NIR-VIS-UV upconversion in Er-doped fluoride glass for high-efficiency solar cells , 2009 .

[8]  G. Demopoulos,et al.  Near‐Infrared Sunlight Harvesting in Dye‐Sensitized Solar Cells Via the Insertion of an Upconverter‐TiO2 Nanocomposite Layer , 2010, Advanced materials.

[9]  A. Patra,et al.  Impacts of core-shell structures on properties of lanthanide-based nanocrystals: crystal phase, lattice strain, downconversion, upconversion and energy transfer. , 2012, Nanoscale.

[10]  W. Cao,et al.  Conductive upconversion Er,Yb-FTO nanoparticle coating to replace Pt as a low-cost and high-performance counter electrode for dye-sensitized solar cells. , 2014, ACS applied materials & interfaces.

[11]  T. Saga Advances in crystalline silicon solar cell technology for industrial mass production , 2010 .

[12]  Yueli Zhang,et al.  Simultaneous size and luminescence control of NaYF4:Yb3+/RE3+ (RE = Tm, Ho) microcrystals via Li+ doping , 2015 .

[13]  F. Castellano,et al.  Nonlinear photochemistry squared: quartic light power dependence realized in photon upconversion. , 2009, The journal of physical chemistry. A.

[14]  W. Warta,et al.  Solar cell efficiency tables (version 36) , 2010 .

[15]  B. K. Gupta,et al.  New insight into rare-earth doped gadolinium molybdate nanophosphor assisted broad spectral converters from UV to NIR for silicon solar cells , 2015 .

[16]  Q. Tang,et al.  Enhancement of the Photovoltaic Performance of Dye‐Sensitized Solar Cells by Doping Y0.78Yb0.20Er0.02F3 in the Photoanode , 2012 .

[17]  D. Gao,et al.  Upconversion improvement by the reduction of Na⁺-vacancies in Mn²⁺ doped hexagonal NaYbF₄:Er³⁺ nanoparticles. , 2015, Dalton transactions.

[18]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .

[19]  John-Christopher Boyer,et al.  Synthesis of colloidal upconverting NaYF4: Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals. , 2006, Nano letters.

[20]  G. Demopoulos,et al.  Integration of upconverting β-NaYF4:Yb3+,Er3+@TiO2 composites as light harvesting layers in dye-sensitized solar cells , 2014 .

[21]  Elvira Fortunato,et al.  Silicon thin film solar cells on commercial tiles , 2011 .

[22]  Wei Feng,et al.  Upconversion luminescent materials: advances and applications. , 2015, Chemical reviews.

[23]  Nobuhiro Yanai,et al.  Photon upconverting liquids: matrix-free molecular upconversion systems functioning in air. , 2013, Journal of the American Chemical Society.

[24]  S. Chu,et al.  Investigation of Green Up‐Conversion Behavior in Y6W2O15:Yb3+,Er3+ Phosphor and its Verification in 973‐nm Laser‐Driven GaAs Solar Cell , 2012 .

[25]  Mario Leclerc,et al.  Processable Low-Bandgap Polymers for Photovoltaic Applications† , 2011 .

[26]  Mohamed Abdel-Mottaleb,et al.  Down-converting lanthanide doped TiO2 photoelectrodes for efficiency enhancement of dye-sensitized solar cells , 2011 .

[27]  A. Nozik,et al.  Introduction to solar photon conversion. , 2010, Chemical reviews.

[28]  Christoph Weder,et al.  Light upconversion by triplet–triplet annihilation in diphenylanthracene-based copolymers , 2014 .

[29]  Jing Wang,et al.  Fluorescence resonance energy transfer between NaYF4:Yb,Tm upconversion nanoparticles and gold nanorods: Near-infrared responsive biosensor for streptavidin , 2014 .

[30]  Xiaogang Liu,et al.  Recent Advances in the Chemistry of Lanthanide‐Doped Upconversion Nanocrystals , 2009 .

[31]  Nobuhiro Yanai,et al.  Photon upconversion in supramolecular gel matrixes: spontaneous accumulation of light-harvesting donor-acceptor arrays in nanofibers and acquired air stability. , 2015, Journal of the American Chemical Society.

[32]  Markus P. Hehlen,et al.  Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting Upconversion Phosphors , 2004 .

[33]  H. Ågren,et al.  Simultaneous multiple wavelength upconversion in a core-shell nanoparticle for enhanced near infrared light harvesting in a dye-sensitized solar cell. , 2014, ACS applied materials & interfaces.

[34]  Paras N. Prasad,et al.  (α-NaYbF4:Tm(3+))/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. , 2012, ACS nano.

[35]  Christoph Weder,et al.  Low-power photon upconversion in organic glasses , 2014 .

[36]  Shaomin Ji,et al.  Triplet–triplet annihilation based upconversion: from triplet sensitizers and triplet acceptors to upconversion quantum yields , 2011 .

[37]  Christoph Weder,et al.  Organogels for low-power light upconversion , 2015 .

[38]  Miao Xu,et al.  Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure , 2012, Nature Photonics.

[39]  P. Prasad,et al.  Nanochemistry and nanomaterials for photovoltaics. , 2013, Chemical Society reviews.

[40]  Dan Zhao,et al.  Ultraviolet upconversion fluorescence of Er3+ induced by 1560 nm laser excitation. , 2010, Optics letters.

[41]  Weihua Zhang,et al.  Large Enhancement of Upconversion Luminescence of NaYF4:Yb3+/Er3+ Nanocrystal by 3D Plasmonic Nano‐Antennas , 2012, Advanced materials.

[42]  Yalin Lu,et al.  Enhancing near-infrared solar cell response using upconverting transparentceramics , 2011 .

[43]  Zhuang Liu,et al.  Upconversion nanophosphors for small-animal imaging. , 2012, Chemical Society reviews.

[44]  Martin Wagner,et al.  Exploring the Environmental Kuznets Hypothesis. Theoretical and Econometric Problems , 2007 .

[45]  Hans H Gorris,et al.  Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres. , 2013, Angewandte Chemie.

[46]  Antonio Luque,et al.  Enhancement of up-conversion efficiency by combining rare earth-doped phosphors with PbS quantum dots , 2010 .

[47]  J. Bünzli Lanthanide luminescence for biomedical analyses and imaging. , 2010, Chemical reviews.

[48]  Dan Oron,et al.  Two-color antibunching from band-gap engineered colloidal semiconductor nanocrystals. , 2012, Nano letters.

[49]  M. Green,et al.  Efficiency enhancement of solar cells by luminescent up-conversion of sunlight , 2006 .

[50]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[51]  W.G.J.H.M. van Sark,et al.  Towards upconversion for amorphous silicon solar cells , 2010 .

[52]  Ling-Dong Sun,et al.  Nd(3+)-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect. , 2013, ACS nano.

[53]  Gordon G Wallace,et al.  Dye-Sensitized Solar Cell with Integrated Triplet-Triplet Annihilation Upconversion System. , 2013, The journal of physical chemistry letters.

[54]  Nobuhiro Yanai,et al.  Photon-Upconverting Ionic Liquids: Effective Triplet Energy Migration in Contiguous Ionic Chromophore Arrays. , 2015, Angewandte Chemie.

[55]  Atomic structure of interface states in silicon heterojunction solar cells. , 2013, Physical review letters.

[56]  Maxwell J. Crossley,et al.  Photochemical Upconversion Enhanced Solar Cells: Effect of a Back Reflector , 2012 .

[57]  Yijun Zhong,et al.  Synthesis of vis/NIR-driven hybrid photocatalysts by electrostatic assembly of NaYF4:Yb, Tm nanocrystals on g-C3N4 nanosheets , 2015 .

[58]  M. Haase,et al.  Highly Efficient Multicolour Upconversion Emission in Transparent Colloids of Lanthanide‐Doped NaYF4 Nanocrystals , 2004 .

[59]  M. Woodhouse,et al.  Molecular semiconductors in organic photovoltaic cells. , 2010, Chemical reviews.

[60]  Wei Guo,et al.  An upconversion NaYF4:Yb3+,Er3+/TiO2 core–shell nanoparticle photoelectrode for improved efficiencies of dye-sensitized solar cells , 2013 .

[61]  Yong Cao,et al.  Development of Novel Conjugated Donor Polymers for High‐Efficiency Bulk‐Heterojunction Photovoltaic Devices , 2010 .

[62]  U. Rodríguez-Mendoza,et al.  Upconversion mechanisms in rare-earth doped glasses to improve the efficiency of silicon solar cells , 2011 .

[63]  Wei Feng,et al.  Water-soluble lanthanide upconversion nanophosphors: Synthesis and bioimaging applications in vivo , 2014 .

[64]  Paras N. Prasad,et al.  Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF₄:Er³+ nanocrystals under excitation at 1490 nm. , 2011, ACS nano.

[65]  N. Lewis Toward Cost-Effective Solar Energy Use , 2007, Science.

[66]  Tymish Y. Ohulchanskyy,et al.  Use of colloidal upconversion nanocrystals for energy relay solar cell light harvesting in the near-infrared region , 2012 .

[67]  G. J. Rios-Moreno,et al.  Optimal sizing of renewable hybrids energy systems: A review of methodologies , 2012 .

[68]  W.G.J.H.M. van Sark,et al.  Enhanced near-infrared response of a-Si:H solar cells with β-NaYF4:Yb3+ (18%), Er3+ (2%) upconversion phosphors , 2010 .

[69]  F. Castellano,et al.  Supermolecular-chromophore-sensitized near-infrared-to-visible photon upconversion. , 2010, Journal of the American Chemical Society.

[70]  B. van der Ende,et al.  Lanthanide ions as spectral converters for solar cells. , 2009, Physical chemistry chemical physics : PCCP.

[71]  S. Zakeeruddin,et al.  Molecular engineering of push-pull porphyrin dyes for highly efficient dye-sensitized solar cells: the role of benzene spacers. , 2014, Angewandte Chemie.

[72]  G. Demopoulos,et al.  Enhanced performance of dye-sensitized solar cells by utilization of an external, bifunctional layer consisting of uniform β-NaYF₄:Er³⁺/Yb³⁺ nanoplatelets. , 2011, ACS applied materials & interfaces.

[73]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[74]  Graham R Fleming,et al.  Lessons from nature about solar light harvesting. , 2011, Nature chemistry.

[75]  Shuo Tan,et al.  Lanthanide-doped ultrasmall yttrium fluoride nanoparticles with enhanced multicolor upconversion photoluminescence , 2012 .

[76]  C. Brabec,et al.  Rare‐Earth Ion Doped Up‐Conversion Materials for Photovoltaic Applications , 2011, Advanced materials.

[77]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[78]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[79]  Fu-ping Wang,et al.  Upconversion mechanism for two-color emission in rare-earth-ion-dopedZrO2nanocrystals , 2007 .

[80]  Up-conversion semiconducting MoO3:Yb/Er nanocomposites as buffer layer in organic solar cells , 2012 .

[81]  Angelo Monguzzi,et al.  Fast and long-range triplet exciton diffusion in metal-organic frameworks for photon upconversion at ultralow excitation power. , 2015, Nature materials.

[82]  Angelo Monguzzi,et al.  Highly Efficient Photon Upconversion in Self-Assembled Light-Harvesting Molecular Systems , 2015, Scientific Reports.

[83]  Michael Grätzel,et al.  Recent advances in sensitized mesoscopic solar cells. , 2009, Accounts of chemical research.

[84]  Anthony K. Burrell,et al.  Porphyrins as light harvesters in the dye-sensitised TiO2 solar cell , 2004 .

[85]  I. Buyanova,et al.  Energy upconversion in GaP/GaNP core/shell nanowires for enhanced near-infrared light harvesting. , 2014, Small.

[86]  V. Holmberg,et al.  Broadband up-conversion at subsolar irradiance: triplet-triplet annihilation boosted by fluorescent semiconductor nanocrystals. , 2014, Nano letters.

[87]  Tymish Y. Ohulchanskyy,et al.  Lanthanide‐Doped Fluoride Core/Multishell Nanoparticles for Broadband Upconversion of Infrared Light , 2015 .

[88]  Jihuai Wu,et al.  Enhancing photovoltaic performance of dye-sensitized solar cell by rare-earth doped oxide of Lu2O3:(Tm3+, Yb3+) , 2011 .

[89]  G. Olah Beyond oil and gas: the methanol economy. , 2006, Angewandte Chemie.

[90]  Yuliang Zhao,et al.  TPGS-stabilized NaYbF4:Er upconversion nanoparticles for dual-modal fluorescent/CT imaging and anticancer drug delivery to overcome multi-drug resistance. , 2015, Biomaterials.

[91]  Qiang Sun,et al.  Mechanistic investigation of photon upconversion in Nd(3+)-sensitized core-shell nanoparticles. , 2013, Journal of the American Chemical Society.

[92]  Jihuai Wu,et al.  Application of Yb3+, Er3+-doped yttrium oxyfluoride nanocrystals in dye-sensitized solar cells , 2012 .

[93]  Madhab Pokhrel,et al.  Intense visible and near infrared upconversion in M2O2S: Er (M=Y, Gd, La) phosphor under 1550 nm excitation , 2012 .

[94]  W. Cao,et al.  A simple modification of near-infrared photon-to-electron response with fluorescence resonance energy transfer for dye-sensitized solar cells , 2014 .

[95]  E. Yeow,et al.  Ultralow-threshold two-photon pumped amplified spontaneous emission and lasing from seeded CdSe/CdS nanorod heterostructures. , 2012, ACS nano.

[96]  S. R. Silva,et al.  Near infrared up-conversion in organic photovoltaic devices using an efficient Yb3+:Ho3+ Co-doped Ln2BaZnO5 (Ln = Y, Gd) phosphor , 2012 .

[97]  G. Diao,et al.  Synthesis of 1D upconversion CeO2:Er, Yb nanofibers via electrospinning and their performance in dye-sensitized solar cells , 2015 .

[98]  Hongwei Lu,et al.  Enhanced upconversion luminescence in phase-separation-controlled crystallization glass ceramics containing Yb/Er(Tm): NaLuF4 nanocrystals , 2015 .

[99]  H. Akbari,et al.  Solar spectral optical properties of pigments. Part I: model for deriving scattering and absorption coefficients from transmittance and reflectance measurements , 2005 .

[100]  P. Gibart,et al.  Below Band-Gap IR Response of Substrate-Free GaAs Solar Cells Using Two-Photon Up-Conversion , 1996 .

[101]  Xin Li,et al.  Hybrid Molecule-Nanocrystal Photon Upconversion Across the Visible and Near-Infrared. , 2015, Nano letters.

[102]  G. H. Bauer,et al.  Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization , 2010 .

[103]  Q. Zhang,et al.  Spectral conversion for solar cell efficiency enhancement using YVO4:Bi3+,Ln3+ (Ln = Dy, Er, Ho, Eu, Sm, and Yb) phosphors , 2011 .

[104]  F. Auzel Rare Earth Doped Vitroceramics: New, Efficient, Blue and Green Emitting Materials for Infrared Up‐Conversion , 1975 .

[105]  W. Cao,et al.  Enhanced near-infrared to visible upconversion nanoparticles of Ho³⁺-Yb³⁺-F⁻ tri-doped TiO₂ and its application in dye-sensitized solar cells with 37% improvement in power conversion efficiency. , 2014, Inorganic chemistry.

[106]  Xing-Zhong Zhao,et al.  Double-shell β-NaYF4:Yb3+, Er3+/SiO2/TiO2 submicroplates as a scattering and upconverting layer for efficient dye-sensitized solar cells. , 2013, Chemical communications.

[107]  H. Akbari,et al.  Erratum to “Solar spectral optical properties of pigments—Part I: Model for deriving scattering and absorption coefficients from transmittance and reflectance measurements” [Sol. Mater. Sol. Cells (2005) 89(4) 319–349] , 2012 .

[108]  Jun Lin,et al.  Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application , 2010 .

[109]  Xiaohong Yan,et al.  Controlled synthesis and optical characterization of multifunctional ordered Y2O3 : Er3+ porous pyramid arrays , 2011 .

[110]  Timothy W. Schmidt,et al.  Photochemical upconversion: present status and prospects for its application to solar energy conversion , 2015 .

[111]  Shanshan Huang,et al.  Multifunctional Nd(3+)-sensitized upconversion nanomaterials for synchronous tumor diagnosis and treatment. , 2015, Nanoscale.

[112]  M. Grätzel Photovoltaic and photoelectrochemical conversion of solar energy , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[113]  Jan C. Hummelen,et al.  Broadband dye-sensitized upconversion of near-infrared light , 2012, Nature Photonics.

[114]  Chunzhong Li,et al.  Plasmon-enhanced efficient dye-sensitized solar cells using core–shell-structured β-NaYF4:Yb,Er@SiO2@Au nanocomposites , 2014 .

[115]  Yuen Yap Cheng,et al.  Singlet Oxygen Mediated Photochemical Upconversion of NIR Light , 2011 .

[116]  M. Baroughi,et al.  Two-Color Surface Plasmon Polariton Enhanced Upconversion in NaYF4:Yb:Tm Nanoparticles on Au Nanopillar Arrays , 2014 .

[117]  Ingo Klimant,et al.  Efficient Broadband Triplet–Triplet Annihilation‐Assisted Photon Upconversion at Subsolar Irradiance in Fully Organic Systems , 2015 .

[118]  K. Samatha,et al.  UV–visible upconversion studies of Nd3+ ions in lead tellurite glass , 2013 .

[119]  Yungang Zhang,et al.  Two-color upconversion in rare-earth-ion-doped ZrO2 nanocrystals , 2006 .

[120]  Wei Feng,et al.  Upconversion‐Nanophosphor‐Based Functional Nanocomposites , 2013, Advanced materials.

[121]  Martin A. Green,et al.  Solar cell efficiency tables , 1993 .

[122]  D. Oron,et al.  Luminescence upconversion in colloidal double quantum dots. , 2013, Nature nanotechnology.

[123]  Guanying Chen,et al.  Ultrasmall monodisperse NaYF(4):Yb(3+)/Tm(3+) nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence. , 2010, ACS nano.

[124]  Maxwell J. Crossley,et al.  Micro-optical design of photochemical upconverters for thin-film solar cells , 2013 .

[125]  Helmut Schäfer,et al.  Upconverting nanoparticles. , 2011, Angewandte Chemie.

[126]  J. Bünzli,et al.  Lanthanide NIR luminescence for telecommunications, bioanalyses and solar energy conversion , 2010 .

[127]  Jia-Hung Tsai,et al.  Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. , 2009, ACS nano.

[128]  Junichi Ohwaki,et al.  Efficient 1.5 µm to Visible Upconversion in Er3+-Doped Halide Phosphors , 1994 .

[129]  John-Christopher Boyer,et al.  Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles. , 2010, Nanoscale.

[130]  Chun-Hua Yan,et al.  Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra. , 2014, Accounts of chemical research.

[131]  Yang Yang,et al.  A polymer tandem solar cell with 10.6% power conversion efficiency , 2013, Nature Communications.

[132]  M. Simmons Twilight in the Desert: The Coming Saudi Oil Shock and the World Economy , 2005 .

[133]  Yongsheng Chen,et al.  β-NaYF4:Er3+(10%) microprisms for the enhancement of a-Si:H solar cell near-infrared responses , 2012 .

[134]  Kezhi Zheng,et al.  Efficiency enhancement of inverted polymer solar cells by doping NaYF4:Yb3+, Er3+ nanocomposites in PCDTBT:PCBM active layer , 2014 .

[135]  N. J. Johnson,et al.  Upconverting Lanthanide-Doped NaYF4−PMMA Polymer Composites Prepared by in Situ Polymerization , 2009 .

[136]  Craig M. Johnson,et al.  Slow-light-enhanced upconversion for photovoltaic applications in one-dimensional photonic crystals. , 2011, Optics letters.

[137]  T. Hyeon,et al.  The preferred upconversion pathway for the red emission of lanthanide-doped upconverting nanoparticles, NaYF4:Yb(3+),Er(3.). , 2015, Physical chemistry chemical physics : PCCP.

[138]  Sukhvir Singh,et al.  Core–shell nanophosphor with enhanced NIR–visible upconversion as spectrum modifier for enhancement of solar cell efficiency , 2011 .

[139]  Anping Yang,et al.  Ultra-broadband near-infrared excitable upconversion core/shell nanocrystals. , 2012, Chemical communications.

[140]  J. Bünzli Benefiting from the unique properties of lanthanide ions. , 2006, Accounts of chemical research.

[141]  Shu-Hao Chang,et al.  Upconversion effects on the performance of near-infrared laser-driven polymer photovoltaic devices , 2012 .

[142]  S. A. Pollack,et al.  Ion‐pair upconversion pumped laser emission in Er3+ ions in YAG, YLF, SrF2, and CaF2 crystals , 1988 .

[143]  Pieter G. Kik,et al.  Cooperative upconversion as the gain-limiting factor in Er doped miniature Al2O3 optical waveguide amplifiers , 2003 .

[144]  M. Grätzel,et al.  Themed issue: nanomaterials for energy conversion and storage , 2012 .

[145]  Xueyuan Chen,et al.  Upconversion nanoparticles in biological labeling, imaging, and therapy. , 2010, The Analyst.

[146]  Lei Zhou,et al.  Nd3+ Sensitized Up/Down Converting Dual-Mode Nanomaterials for Efficient In-vitro and In-vivo Bioimaging Excited at 800 nm , 2013, Scientific Reports.

[147]  Hironori Arakawa,et al.  Molecular Design of Coumarin Dyes for Efficient Dye-Sensitized Solar Cells , 2003 .

[148]  Felix N. Castellano,et al.  Photon upconversion based on sensitized triplet-triplet annihilation , 2010 .

[149]  N. Menyuk,et al.  NaYF4 : Yb,Er—an efficient upconversion phosphor , 1972 .

[150]  C. Grimes,et al.  Förster resonance energy transfer in dye-sensitized solar cells. , 2010, ACS nano.

[151]  Stanislav Baluschev,et al.  Towards the IR limit of the triplet-triplet annihilation-supported up-conversion: tetraanthraporphyrin. , 2008, Chemistry.

[152]  Judith Grimm,et al.  Highly efficient near-infrared to visible up-conversion process in NaYF4:Er3+,Yb3+ , 2005 .

[153]  V. Bermudez,et al.  Progress on Lanthanide-Based Organic—Inorganic Hybrid Phosphors , 2011 .

[154]  A. Shalav,et al.  Application of NaYF 4 : Er 3 + up-converting phosphors for enhanced near-infrared silicon solar cell response , 2005 .

[155]  J. Ohwaki,et al.  New efficient upconversion phosphor BaCl/sub 2/:Er under 1.5 mu m excitation , 1993 .

[156]  F. Lahoz Ho(3+)-doped nanophase glass ceramics for efficiency enhancement in silicon solar cells. , 2008, Optics letters.

[157]  Michael Grätzel,et al.  Photoelectrochemical cells , 2001, Nature.

[158]  C. Weder,et al.  Low-power photon upconversion through triplet–triplet annihilation in polymers , 2012 .

[159]  Jun Jiang,et al.  A New Cubic Phase for a NaYF4 Host Matrix Offering High Upconversion Luminescence Efficiency. , 2015 .

[160]  Maxwell J. Crossley,et al.  Efficiency Enhancement of Organic and Thin-Film Silicon Solar Cells with Photochemical Upconversion , 2012 .

[161]  K. Krämer,et al.  Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion , 2005 .