Representation and calibration of elastic localization kernels for a broad class of cubic polycrystals

Localization kernels play an important role in the study of hierarchical material systems with well separated length scales. They allow for a computationally efficient communication of critical information between the constituent length scales. They are particularly well suited for capturing how an imposed variable (e.g., stress or strain) at the higher length scale is spatially distributed at the lower length scale (i.e., localization linkages). In recent work, our research group has presented a novel framework called Materials Knowledge Systems (MKS) for the representation and calibration of the localization kernels, and demonstrated the viability of this approach on selected individual material systems. In this work, we present and demonstrate an important extension to the MKS framework that allows representation and calibration of the localization kernels for an entire class of materials (e.g., a selected class of single phase cubic polycrystalline materials).

[1]  Surya R. Kalidindi,et al.  Computationally Efficient, Fully Coupled Multiscale Modeling of Materials Phenomena Using Calibrated Localization Linkages , 2012 .

[2]  Jitesh H. Panchal,et al.  Key computational modeling issues in Integrated Computational Materials Engineering , 2013, Comput. Aided Des..

[3]  Mark F. Horstemeyer,et al.  Multiscale modeling of the plasticity in an aluminum single crystal , 2009 .

[4]  S. Ahzi,et al.  Statistical continuum theory for large plastic deformation of polycrystalline materials , 2001 .

[5]  Hervé Moulinec,et al.  A numerical method for computing the overall response of nonlinear composites with complex microstructure , 1998, ArXiv.

[6]  J. Michel,et al.  Effective properties of composite materials with periodic microstructure : a computational approach , 1999 .

[7]  David L. McDowell,et al.  A second gradient theoretical framework for hierarchical multiscale modeling of materials , 2010 .

[8]  G. Milton The Theory of Composites , 2002 .

[9]  G. Proust,et al.  Integration of Microstructure-Sensitive Design with Finite Element Methods: Elastic-Plastic Case Studies in FCC Polycrystals , 2007 .

[10]  David T. Fullwood,et al.  Elastic properties closures using second-order homogenization theories: Case studies in composites of two isotropic constituents , 2006 .

[11]  David T. Fullwood,et al.  Spectral representation of higher-order localization relationships for elastic behavior of polycrystalline cubic materials , 2008 .

[12]  S. Kalidindi,et al.  Extracting single-crystal elastic constants from polycrystalline samples using spherical nanoindentation and orientation measurements , 2014 .

[13]  H. Garmestani,et al.  Statistical continuum mechanics analysis of an elastic two-isotropic-phase composite material , 2000 .

[14]  D. McDowell A perspective on trends in multiscale plasticity , 2010 .

[15]  David T. Fullwood,et al.  Microstructure Sensitive Design for Performance Optimization , 2012 .

[16]  Brent L. Adams,et al.  Bounding elastic constants of an orthotropic polycrystal using measurements of the microstructure , 1996 .

[17]  Brent L. Adams,et al.  The mesostructure—properties linkage in polycrystals , 1998 .

[18]  Surya R. Kalidindi,et al.  Delineation of first-order closures for plastic properties requiring explicit consideration of strain hardening and crystallographic texture evolution , 2008 .

[19]  Surya R. Kalidindi,et al.  Multi-scale modeling of elastic response of three-dimensional voxel-based microstructure datasets using novel DFT-based knowledge systems , 2010 .

[20]  Surya R. Kalidindi,et al.  A new framework for computationally efficient structure–structure evolution linkages to facilitate high-fidelity scale bridging in multi-scale materials models , 2011 .

[21]  S. Kalidindi,et al.  Novel microstructure quantification framework for databasing, visualization, and analysis of microstructure data , 2013, Integrating Materials and Manufacturing Innovation.

[22]  S. Kalidindi,et al.  Finite approximations to the second-order properties closure in single phase polycrystals , 2005 .

[23]  G. Proust,et al.  Procedures for construction of anisotropic elastic–plastic property closures for face-centered cubic polycrystals using first-order bounding relations , 2006 .

[24]  Mark J. Beran,et al.  Statistical Continuum Theories , 1968 .

[25]  E. Kröner Bounds for effective elastic moduli of disordered materials , 1977 .

[26]  John Hinde,et al.  Statistical Modelling in R , 2009 .

[27]  Surya R. Kalidindi,et al.  Fast computation of first-order elastic–plastic closures for polycrystalline cubic-orthorhombic microstructures , 2007 .

[28]  Surya R. Kalidindi,et al.  Calibration of elastic localization tensors to finite element models: Application to cubic polycrystals , 2007 .

[29]  Rajen Dinesh Shah,et al.  Statistical modelling , 2015 .

[30]  T. A. Mason,et al.  Use of microstructural statistics in predicting polycrystalline material properties , 1999 .

[31]  Surya R. Kalidindi,et al.  Formulation and calibration of higher-order elastic localization relationships using the MKS approach , 2011 .

[32]  David L. McDowell,et al.  Microstructure-sensitive modeling of polycrystalline IN 100 , 2008 .

[33]  Yuksel C. Yabansu,et al.  Understanding and visualizing microstructure and microstructure variance as a stochastic process , 2011 .

[34]  Surya R. Kalidindi,et al.  Calibrated localization relationships for elastic response of polycrystalline aggregates , 2014 .

[35]  G. B. Olson,et al.  Computational Design of Hierarchically Structured Materials , 1997 .

[36]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[37]  H. Garmestani,et al.  Microstructure-sensitive design of a compliant beam , 2001 .

[38]  Surya R. Kalidindi,et al.  Multi-scale modeling of the elastic response of a structural component made from a composite material using the materials knowledge system , 2012 .

[39]  S. Kalidindi,et al.  Microstructure sensitive design of an orthotropic plate subjected to tensile load , 2004 .

[40]  Matthias Abt,et al.  Texture Analysis In Materials Science Mathematical Methods , 2016 .

[41]  J. Tinsley Oden,et al.  Hierarchical modeling of heterogeneous solids , 1996 .