Orientability and Energy Minimization in Liquid Crystal Models

Uniaxial nematic liquid crystals are modelled in the Oseen–Frank theory through a unit vector field n. This theory has the apparent drawback that it does not respect the head-to-tail symmetry in which n should be equivalent to −n. This symmetry is preserved in the constrained Landau–de Gennes theory that works with the tensor $${Q=s \left(n\otimes n-\frac{1}{3} Id\right)}$$. We study the differences and the overlaps between the two theories. These depend on the regularity class used as well as on the topology of the underlying domain. We show that for simply-connected domains and in the natural energy class W1,2 the two theories coincide, but otherwise there can be differences between the two theories, which we identify. In the case of planar domains with holes and various boundary conditions, for the simplest form of the energy functional, we completely characterise the instances in which the predictions of the constrained Landau–de Gennes theory differ from those of the Oseen–Frank theory.

[1]  M. R. Pakzad,et al.  Weak density of smooth maps for the Dirichlet energy between manifolds , 2003 .

[2]  H. Brezis,et al.  Composition in fractional Sobolev spaces , 2001 .

[3]  H. Brezis,et al.  Degree theory and BMO; part I: Compact manifolds without boundaries , 1995 .

[4]  H. Brezis,et al.  Degree theory and BMO; part II: Compact manifolds with boundaries , 1995 .

[5]  J. Milnor Topology from the differentiable viewpoint , 1965 .

[6]  Fanghua Lin,et al.  Topology of sobolev mappings, II , 2003 .

[7]  R. Bing The Geometric Topology of 3-Manifolds , 1983 .

[8]  W. Ziemer Weakly differentiable functions , 1989 .

[9]  A. Isihara,et al.  Theory of Liquid Crystals , 1972 .

[10]  J. Conway Functions of One Complex Variable II , 1978 .

[11]  John M. Lee Introduction to Topological Manifolds , 2000 .

[12]  G. Crawford,et al.  Molecular self-organization in cylindrical nanocavities. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  P. Gennes,et al.  The physics of liquid crystals , 1974 .

[14]  F. Lin,et al.  Topology of sobolev mappings IV , 2005 .

[15]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[16]  Fanghua Lin,et al.  Topology of Sobolev mappings , 2001 .

[17]  B. Dundas,et al.  DIFFERENTIAL TOPOLOGY , 2002 .

[18]  Harmonic maps into round cones and singularities of nematic liquid crystals , 1993 .

[19]  H. Beckert,et al.  J. L. Lions and E. Magenes, Non‐Homogeneous Boundary Value Problems and Applications, II. (Die Grundlehren d. Math. Wissenschaften, Bd. 182). XI + 242 S. Berlin/Heidelberg/New York 1972. Springer‐Verlag. Preis geb. DM 58,— , 1973 .

[20]  Michael Frazier,et al.  Studies in Advanced Mathematics , 2004 .

[21]  R. Ho Algebraic Topology , 2022 .

[22]  L. Evans Measure theory and fine properties of functions , 1992 .

[23]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[24]  G. Pólya,et al.  Functions of One Complex Variable , 1998 .

[25]  D. Preiss,et al.  WEAKLY DIFFERENTIABLE FUNCTIONS (Graduate Texts in Mathematics 120) , 1991 .

[26]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[27]  J. Ball,et al.  Orientable and Non-Orientable Line Field Models for Uniaxial Nematic Liquid Crystals , 2008 .

[28]  I. Holopainen Riemannian Geometry , 1927, Nature.

[29]  G. Vertogen,et al.  Generalized Landau-de Gennes theory of uniaxial and biaxial nematic liquid crystals , 1997 .

[30]  H. Trebin,et al.  Structure of the elastic free energy for chiral nematic liquid crystals. , 1989, Physical review. A, General physics.

[31]  H. Brezis,et al.  Ginzburg-Landau Vortices , 1994 .

[32]  J. Ball,et al.  Orientable and non‐orientable director fields for liquid crystals , 2007 .

[33]  J. Conway,et al.  Functions of a Complex Variable , 1964 .

[34]  Apala Majumdar,et al.  Landau–De Gennes Theory of Nematic Liquid Crystals: the Oseen–Frank Limit and Beyond , 2008, 0812.3131.

[35]  Arghir Zarnescu,et al.  Refined approximation for minimizers of a Landau-de Gennes energy functional , 2010, 1006.5689.

[36]  F. C. Frank,et al.  I. Liquid crystals. On the theory of liquid crystals , 1958 .

[37]  F. Lin,et al.  Partially constrained boundary conditions with energy minimizing mappings , 1989 .

[38]  Radu Purice,et al.  A boundary value problem related to the Ginzburg-Landau model , 1991 .

[39]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[40]  Karen Uhlenbeck,et al.  Boundary regularity and the Dirichlet problem for harmonic maps , 1983 .

[41]  J. Ball,et al.  Partial regularity and smooth topology-preserving approximations of rough domains , 2013, 1312.5156.

[42]  G. Burton Sobolev Spaces , 2013 .

[43]  W. Ziemer Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation , 1989 .

[44]  Bernard D. Coleman,et al.  Bifurcation analysis of minimizing harmonic maps describing the equilibrium of nematic phases between cylinders , 1992 .