Orientability and Energy Minimization in Liquid Crystal Models
暂无分享,去创建一个
[1] M. R. Pakzad,et al. Weak density of smooth maps for the Dirichlet energy between manifolds , 2003 .
[2] H. Brezis,et al. Composition in fractional Sobolev spaces , 2001 .
[3] H. Brezis,et al. Degree theory and BMO; part I: Compact manifolds without boundaries , 1995 .
[4] H. Brezis,et al. Degree theory and BMO; part II: Compact manifolds with boundaries , 1995 .
[5] J. Milnor. Topology from the differentiable viewpoint , 1965 .
[6] Fanghua Lin,et al. Topology of sobolev mappings, II , 2003 .
[7] R. Bing. The Geometric Topology of 3-Manifolds , 1983 .
[8] W. Ziemer. Weakly differentiable functions , 1989 .
[9] A. Isihara,et al. Theory of Liquid Crystals , 1972 .
[10] J. Conway. Functions of One Complex Variable II , 1978 .
[11] John M. Lee. Introduction to Topological Manifolds , 2000 .
[12] G. Crawford,et al. Molecular self-organization in cylindrical nanocavities. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.
[13] P. Gennes,et al. The physics of liquid crystals , 1974 .
[14] F. Lin,et al. Topology of sobolev mappings IV , 2005 .
[15] M. Spivak. A comprehensive introduction to differential geometry , 1979 .
[16] Fanghua Lin,et al. Topology of Sobolev mappings , 2001 .
[17] B. Dundas,et al. DIFFERENTIAL TOPOLOGY , 2002 .
[18] Harmonic maps into round cones and singularities of nematic liquid crystals , 1993 .
[19] H. Beckert,et al. J. L. Lions and E. Magenes, Non‐Homogeneous Boundary Value Problems and Applications, II. (Die Grundlehren d. Math. Wissenschaften, Bd. 182). XI + 242 S. Berlin/Heidelberg/New York 1972. Springer‐Verlag. Preis geb. DM 58,— , 1973 .
[20] Michael Frazier,et al. Studies in Advanced Mathematics , 2004 .
[21] R. Ho. Algebraic Topology , 2022 .
[22] L. Evans. Measure theory and fine properties of functions , 1992 .
[23] J. Lions,et al. Non-homogeneous boundary value problems and applications , 1972 .
[24] G. Pólya,et al. Functions of One Complex Variable , 1998 .
[25] D. Preiss,et al. WEAKLY DIFFERENTIABLE FUNCTIONS (Graduate Texts in Mathematics 120) , 1991 .
[26] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators , 1978 .
[27] J. Ball,et al. Orientable and Non-Orientable Line Field Models for Uniaxial Nematic Liquid Crystals , 2008 .
[28] I. Holopainen. Riemannian Geometry , 1927, Nature.
[29] G. Vertogen,et al. Generalized Landau-de Gennes theory of uniaxial and biaxial nematic liquid crystals , 1997 .
[30] H. Trebin,et al. Structure of the elastic free energy for chiral nematic liquid crystals. , 1989, Physical review. A, General physics.
[31] H. Brezis,et al. Ginzburg-Landau Vortices , 1994 .
[32] J. Ball,et al. Orientable and non‐orientable director fields for liquid crystals , 2007 .
[33] J. Conway,et al. Functions of a Complex Variable , 1964 .
[34] Apala Majumdar,et al. Landau–De Gennes Theory of Nematic Liquid Crystals: the Oseen–Frank Limit and Beyond , 2008, 0812.3131.
[35] Arghir Zarnescu,et al. Refined approximation for minimizers of a Landau-de Gennes energy functional , 2010, 1006.5689.
[36] F. C. Frank,et al. I. Liquid crystals. On the theory of liquid crystals , 1958 .
[37] F. Lin,et al. Partially constrained boundary conditions with energy minimizing mappings , 1989 .
[38] Radu Purice,et al. A boundary value problem related to the Ginzburg-Landau model , 1991 .
[39] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[40] Karen Uhlenbeck,et al. Boundary regularity and the Dirichlet problem for harmonic maps , 1983 .
[41] J. Ball,et al. Partial regularity and smooth topology-preserving approximations of rough domains , 2013, 1312.5156.
[42] G. Burton. Sobolev Spaces , 2013 .
[43] W. Ziemer. Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation , 1989 .
[44] Bernard D. Coleman,et al. Bifurcation analysis of minimizing harmonic maps describing the equilibrium of nematic phases between cylinders , 1992 .