Genomes of fungi and relatives reveal delayed loss of ancestral gene families and evolution of key fungal traits

[1]  M. Koriabine,et al.  Genomic innovation and horizontal gene transfer shaped plant colonization and biomass degradation strategies of a globally prevalent fungal pathogen , 2022, bioRxiv.

[2]  Peter M. Letcher,et al.  Genomic analysis reveals cryptic diversity in aphelids and sheds light on the emergence of Fungi , 2022, Current Biology.

[3]  Christina A. Cuomo,et al.  Diploid-dominant life cycles characterize the early evolution of Fungi , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[4]  E. Bapteste,et al.  Divergent genomic trajectories predate the origin of animals and fungi , 2022, Nature.

[5]  J. Stajich,et al.  Evolution of zygomycete secretomes and the origins of terrestrial fungal ecologies , 2022, iScience.

[6]  D. Moreira,et al.  Phylogenomics Supports the Monophyly of Aphelids and Fungi and Identifies New Molecular Synapomorphies. , 2022, Systematic biology.

[7]  M. Cox,et al.  Reconstruction of gene innovation associated with major evolutionary transitions in the kingdom Fungi , 2022, BMC biology.

[8]  S. Gomes,et al.  A light-sensing system in the common ancestor of the fungi , 2022, Current Biology.

[9]  J. Slot,et al.  Gene age shapes the transcriptional landscape of sexual morphogenesis in mushroom-forming fungi (Agaricomycetes) , 2022, eLife.

[10]  M. Künzler,et al.  Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes , 2021, bioRxiv.

[11]  D. Drew,et al.  Structures and General Transport Mechanisms by the Major Facilitator Superfamily (MFS) , 2021, Chemical reviews.

[12]  R. Ford,et al.  ATP binding cassette importers in eukaryotic organisms , 2021, Biological reviews of the Cambridge Philosophical Society.

[13]  M. Rosso,et al.  Evolution of Fungal Carbohydrate-Active Enzyme Portfolios and Adaptation to Plant Cell-Wall Polymers , 2021, Journal of fungi.

[14]  Jacob L. Steenwyk,et al.  A genome-scale phylogeny of the kingdom Fungi , 2021, Current Biology.

[15]  G. Sipos,et al.  Hallmarks of Basidiomycete Soft- and White-Rot in Wood-Decay -Omics Data of Two Armillaria Species , 2021, Microorganisms.

[16]  K. Hyde,et al.  Where are the basal fungi? Current status on diversity, ecology, evolution, and taxonomy , 2020, Biologia.

[17]  A. Muszewska,et al.  Utilization of Cobalamin Is Ubiquitous in Early-Branching Fungal Phyla , 2020, bioRxiv.

[18]  A. Salamov,et al.  Genome-scale phylogenetic analyses confirm Olpidium as the closest living zoosporic fungus to the non-flagellated, terrestrial fungi , 2020, Scientific Reports.

[19]  J. Stajich,et al.  Toward a Fully Resolved Fungal Tree of Life. , 2020, Annual review of microbiology.

[20]  M. Titus,et al.  The actin networks of chytrid fungi reveal evolutionary loss of cytoskeletal complexity in the fungal kingdom , 2020, Current Biology.

[21]  Javier F. Tabima,et al.  Phylogenomic Analyses of Non-Dikarya Fungi Supports Horizontal Gene Transfer Driving Diversification of Secondary Metabolism in the Amphibian Gastrointestinal Symbiont, Basidiobolus , 2020, bioRxiv.

[22]  P. Holland,et al.  Widespread patterns of gene loss in the evolution of the animal kingdom , 2020, Nature Ecology & Evolution.

[23]  Lu Sun,et al.  NCBI Taxonomy: a comprehensive update on curation, resources and tools , 2020, Database J. Biol. Databases Curation.

[24]  J. Paps,et al.  The Origin of Land Plants Is Rooted in Two Bursts of Genomic Novelty , 2019, Current Biology.

[25]  Y. Mukai,et al.  Cyclin‐dependent kinase Pho85p and its cyclins are involved in replicative lifespan through multiple pathways in yeast , 2019, FEBS letters.

[26]  T. Gabaldón,et al.  Gene gain and loss across the Metazoa Tree of Life , 2019, Nature Ecology & Evolution.

[27]  Olga Chernomor,et al.  IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era , 2019, bioRxiv.

[28]  Kohske Takahashi,et al.  Welcome to the Tidyverse , 2019, J. Open Source Softw..

[29]  J. Stajich,et al.  Horizontal Gene Transfer as an Indispensable Driver for Evolution of Neocallimastigomycota into a Distinct Gut-Dwelling Fungal Lineage , 2019, Applied and Environmental Microbiology.

[30]  L. Nagy,et al.  Comparative genomics reveals the origin of fungal hyphae and multicellularity , 2019, Nature Communications.

[31]  J. Stajich,et al.  Phylogenomics of Endogonaceae and evolution of mycorrhizas within Mucoromycota. , 2019, The New phytologist.

[32]  D. Moreira,et al.  Global transcriptome analysis of the aphelid Paraphelidium tribonemae supports the phagotrophic origin of fungi , 2018, Communications Biology.

[33]  N. Talbot,et al.  Quick guide Osmotrophy , 2018 .

[34]  M. Eisen,et al.  Gene family innovation, conservation and loss on the animal stem lineage , 2018, eLife.

[35]  Zhenglu Yang,et al.  dbCAN2: a meta server for automated carbohydrate-active enzyme annotation , 2018, Nucleic Acids Res..

[36]  P. Holland,et al.  Reconstruction of the ancestral metazoan genome reveals an increase in genomic novelty , 2018, Nature Communications.

[37]  Mark N. Puttick,et al.  The timescale of early land plant evolution , 2018, Proceedings of the National Academy of Sciences.

[38]  L. Farinelli,et al.  Ultra-low input transcriptomics reveal the spore functional content and phylogenetic affiliations of poorly studied arbuscular mycorrhizal fungi , 2017, DNA research : an international journal for rapid publication of reports on genes and genomes.

[39]  T. James,et al.  Early Diverging Fungi: Diversity and Impact at the Dawn of Terrestrial Life. , 2017, Annual review of microbiology.

[40]  J. Stajich,et al.  The Fungal Tree of Life: from Molecular Systematics to Genome-Scale Phylogenies. , 2017, Microbiology spectrum.

[41]  J. Slot,et al.  Six Key Traits of Fungi: Their Evolutionary Origins and Genetic Bases , 2017, Microbiology spectrum.

[42]  A. von Haeseler,et al.  UFBoot2: Improving the Ultrafast Bootstrap Approximation , 2017, bioRxiv.

[43]  Jeremy G. Wideman,et al.  What Defines the “Kingdom” Fungi? , 2017, Microbiology spectrum.

[44]  Kevin V. Solomon,et al.  A parts list for fungal cellulosomes revealed by comparative genomics , 2017, Nature Microbiology.

[45]  E. Shelest Transcription Factors in Fungi: TFome Dynamics, Three Major Families, and Dual-Specificity TFs , 2017, Front. Genet..

[46]  Johannes Söding,et al.  Clustering huge protein sequence sets in linear time , 2017, Nature Communications.

[47]  Dannie Durand,et al.  Xenolog classification , 2016, Bioinform..

[48]  K. Garcia,et al.  Comparative Analysis of Secretomes from Ectomycorrhizal Fungi with an Emphasis on Small-Secreted Proteins , 2016, Front. Microbiol..

[49]  J. Tena,et al.  The Dynamic Regulatory Genome of Capsaspora and the Origin of Animal Multicellularity , 2016, Cell.

[50]  Christopher E. Lawson,et al.  Ancestral genome reconstruction identifies the evolutionary basis for trait acquisition in polyphosphate accumulating bacteria , 2016, The ISME Journal.

[51]  Klaus Schliep,et al.  Phylogenetic Analysis in R , 2015 .

[52]  Nicolas E. Buchler,et al.  Punctuated evolution and transitional hybrid network in an ancestral cell cycle of fungi , 2015, bioRxiv.

[53]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[54]  A. Roger,et al.  Phylogenomics Reveals Convergent Evolution of Lifestyles in Close Relatives of Animals and Fungi , 2015, Current Biology.

[55]  Shenghao Xu,et al.  Supplementary Information , 2014, States at War, Volume 3.

[56]  H. Deising,et al.  Compositions of fungal secretomes indicate a greater impact of phylogenetic history than lifestyle adaptation , 2014, BMC Genomics.

[57]  D. Hibbett,et al.  Latent homology and convergent regulatory evolution underlies the repeated emergence of yeasts , 2014, Nature Communications.

[58]  F. Gleason,et al.  Morphology, phylogeny, and ecology of the aphelids (Aphelidea, Opisthokonta) and proposal for the new superphylum Opisthosporidia , 2014, Front. Microbiol..

[59]  Matthew Fraser,et al.  InterProScan 5: genome-scale protein function classification , 2014, Bioinform..

[60]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[61]  Inna Dubchak,et al.  MycoCosm portal: gearing up for 1000 fungal genomes , 2013, Nucleic Acids Res..

[62]  A. Sebé-Pedrós,et al.  Transcription factor evolution in eukaryotes and the assembly of the regulatory toolkit in multicellular lineages , 2013, Proceedings of the National Academy of Sciences.

[63]  Inna Dubchak,et al.  The genome portal of the Department of Energy Joint Genome Institute: 2014 updates , 2013, Nucleic Acids Res..

[64]  Eugene V Koonin,et al.  Genome reduction as the dominant mode of evolution , 2013, BioEssays : news and reviews in molecular, cellular and developmental biology.

[65]  S. Eddy,et al.  Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions , 2013, Nucleic acids research.

[66]  T. Skrzypczak,et al.  The very many faces of presenilins and the γ-secretase complex , 2013, Protoplasma.

[67]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[68]  Liam J. Revell,et al.  phytools: an R package for phylogenetic comparative biology (and other things) , 2012 .

[69]  S. Brunak,et al.  SignalP 4.0: discriminating signal peptides from transmembrane regions , 2011, Nature Methods.

[70]  N. Hall,et al.  Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes , 2011, Proceedings of the National Academy of Sciences.

[71]  D. Bass,et al.  Discovery of novel intermediate forms redefines the fungal tree of life , 2011, Nature.

[72]  Klaus Peter Schliep,et al.  phangorn: phylogenetic analysis in R , 2010, Bioinform..

[73]  P. Nissen,et al.  In and out of the cation pumps: P-type ATPase structure revisited. , 2010, Current opinion in structural biology.

[74]  J. Weete,et al.  Phylogenetic Distribution of Fungal Sterols , 2010, PloS one.

[75]  E. Koonin The Incredible Expanding Ancestor of Eukaryotes , 2010, Cell.

[76]  Hank Tu,et al.  The Genome of Naegleria gruberi Illuminates Early Eukaryotic Versatility , 2010, Cell.

[77]  B. Lang,et al.  Phylogenomic analyses predict sistergroup relationship of nucleariids and Fungi and paraphyly of zygomycetes with significant support , 2009, BMC Evolutionary Biology.

[78]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[79]  C. J. Adams-Collier,et al.  WoLF PSORT: protein localization predictor , 2007, Nucleic Acids Res..

[80]  Kenji Matsuura,et al.  Reconstructing the early evolution of Fungi using a six-gene phylogeny , 2006, Nature.

[81]  Korbinian Strimmer,et al.  APE: Analyses of Phylogenetics and Evolution in R language , 2004, Bioinform..

[82]  A. Krogh,et al.  Reliability measures for membrane protein topology prediction algorithms. , 2003, Journal of molecular biology.

[83]  S. Dongen Graph clustering by flow simulation , 2000 .

[84]  Hidetoshi Shimodaira,et al.  Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference , 1999, Molecular Biology and Evolution.

[85]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[86]  Ari Löytynoja,et al.  Phylogeny-aware alignment with PRANK. , 2014, Methods in molecular biology.

[87]  D. Clapham,et al.  Ancestral Ca2+ signaling machinery in early animal and fungal evolution. , 2012, Molecular biology and evolution.

[88]  Adrian Alexa,et al.  Gene set enrichment analysis with topGO , 2006 .

[89]  Jason Moffat,et al.  Late-G1 cyclin–CDK activity is essential for control of cell morphogenesis in budding yeast , 2004, Nature Cell Biology.