Quadrangular embeddings of complete graphs and the Even Map Color Theorem

Hartsfield and Ringel constructed orientable quadrangular embeddings of the complete graph $K_n$ for $n\equiv 5 \pmod 8$, and nonorientable ones for $n \ge 9$ and $n\equiv 1 \pmod 4$. These provide minimal quadrangulations of their underlying surfaces. We extend these results to determine, for every complete graph $K_n$, $n \ge 4$, the minimum genus, both orientable and nonorientable, for the surface in which $K_n$ has an embedding with all faces of degree at least $4$, and also for the surface in which $K_n$ has an embedding with all faces of even degree. These last embeddings provide sharpness examples for a result of Hutchinson bounding the chromatic number of graphs embedded with all faces of even degree, completing the proof of the Even Map Color Theorem. We also show that if a connected simple graph $G$ has a perfect matching and a cycle then the lexicographic product $G[K_4]$ has orientable and nonorientable quadrangular embeddings; this provides new examples of minimal quadrangulations.

[1]  Amos Altshuler,et al.  Neighborly maps with few vertices , 1992, Discret. Comput. Geom..

[2]  Mike J. Grannell,et al.  Exponential Families of Non-Isomorphic Triangulations of Complete Graphs , 2000, J. Comb. Theory, Ser. B.

[3]  G. Ringel Der vollständige paare Graph auf nichtorientierbaren Flächen. , 1965 .

[4]  Bojan Mohar,et al.  Minimal ordered triangulations of surfaces , 1986 .

[5]  Vladimir P. Korzhik Generating Nonisomorphic Quadrangular Embeddings of a Complete Graph , 2013, J. Graph Theory.

[6]  André Bouchet Orientable and nonorientable genus of the complete bipartite graph , 1978, J. Comb. Theory, Ser. B.

[7]  Serge Lawrencenko Realizing the chromatic numbers and orders of spinal quadrangulations of surfaces , 2012 .

[8]  G. Ringel Map Color Theorem , 1974 .

[9]  Mike J. Grannell,et al.  A lower bound for the number of orientable triangular embeddings of some complete graphs , 2010, J. Comb. Theory, Ser. B.

[10]  Vladimir P. Korzhik,et al.  On the Number of Nonisomorphic Orientable Regular Embeddings of Complete Graphs , 2001, J. Comb. Theory, Ser. B.

[11]  Mark N. Ellingham,et al.  Quadrangular embeddings of complete graphs , 2016 .

[12]  G. Ringel Das Geschlecht des vollständigen paaren Graphen , 1965 .

[13]  Joan P. Hutchinson,et al.  Three-Coloring Graphs Embedded on Surfaces with All Faces Even-Sided , 1995, J. Comb. Theory, Ser. B.

[14]  Jonathan L. Gross,et al.  Topological Graph Theory , 1987, Handbook of Graph Theory.

[15]  Mike J. Grannell,et al.  Doubly Even Orientable Closed 2-cell Embeddings of the Complete Graph , 2014, Electron. J. Comb..

[16]  Serge Lawrencenko,et al.  Determination of the 4-genus of a complete graph (with an appendix) , 2018 .

[17]  Serge Lawrencenko The quadrangular genus of complete graphs , 2017 .

[18]  Arthur T. White,et al.  ON THE GENUS OF THE COMPOSITION OF TWO GRAPHS , 1972 .

[19]  Mike J. Grannell,et al.  A lower bound for the number of triangular embeddings of some complete graphs and complete regular tripartite graphs , 2008, J. Comb. Theory, Ser. B.

[20]  David L. Craft On the genus of joins and compositions of graphs , 1998, Discret. Math..

[21]  Nora Hartsfield,et al.  Minimal quadrangulations of nonorientable surfaces , 1989, J. Comb. Theory, Ser. A.

[22]  Nora Hartsfield,et al.  Minimal quadrangulations of orientable surfaces , 1989, J. Comb. Theory, Ser. B.

[23]  Yusuke Suzuki Triangulations on closed surfaces which quadrangulate other surfaces II , 2005, Discret. Math..

[24]  David L. Craft,et al.  Surgical techniques for construction minimal orientable imbeddings and joins and compositions of graphs , 1991 .

[25]  Ken-ichi Kawarabayashi,et al.  Orientable and Nonorientable Genera for Some Complete Tripartite Graphs , 2004, SIAM J. Discret. Math..

[26]  Seiya Negami,et al.  Three nonisomorphic triangulations of an orientable surface with the same complete graph , 1994, Discret. Math..