Structure-preserving ΓQR and Γ-Lanczos algorithms for Bethe-Salpeter eigenvalue problems

Abstract To solve the Bethe–Salpeter eigenvalue problem with distinct sizes, two efficient methods, called Γ QR algorithm and Γ -Lanczos algorithm, are proposed in this paper. Both algorithms preserve the special structure of the initial matrix ℋ = A B − B ¯ − A ¯ , resulting the computed eigenvalues and the associated eigenvectors still hold the properties similar to those of ℋ . Theorems are given to demonstrate the validity of the proposed two algorithms in theory. Numerical results are presented to illustrate the superiorities of our methods.

[1]  Y. Saad Numerical Methods for Large Eigenvalue Problems , 2011 .

[2]  Tommaso Proietti,et al.  ON THE SPECTRAL PROPERTIES OF MATRICES ASSOCIATED WITH TREND FILTERS , 2010, Econometric Theory.

[3]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[4]  Christopher C. Paige,et al.  The computation of eigenvalues and eigenvectors of very large sparse matrices , 1971 .

[5]  Y. Saad On the Rates of Convergence of the Lanczos and the Block-Lanczos Methods , 1980 .

[6]  Chao Yang,et al.  Structure preserving parallel algorithms for solving the Bethe-Salpeter eigenvalue problem , 2015, 1501.03830.

[7]  Gene H. Golub,et al.  Matrix computations , 1983 .

[8]  M. E. Casida Time-Dependent Density Functional Response Theory for Molecules , 1995 .

[9]  D. Lu,et al.  Ab initio calculations of optical absorption spectra: solution of the Bethe-Salpeter equation within density matrix perturbation theory. , 2010, The Journal of chemical physics.

[10]  Robert M Parrish,et al.  Exact tensor hypercontraction: a universal technique for the resolution of matrix elements of local finite-range N-body potentials in many-body quantum problems. , 2013, Physical review letters.

[11]  Yousef Saad,et al.  Numerical Methods for Electronic Structure Calculations of Materials , 2010, SIAM Rev..

[12]  R. Barbieri,et al.  Solving the Bethe-Salpeter equation for positronium , 1978 .

[13]  S. Kaniel Estimates for Some Computational Techniques - in Linear Algebra , 1966 .

[14]  Zhaojun Bai,et al.  Minimization Principles for the Linear Response Eigenvalue Problem II: Computation , 2013, SIAM J. Matrix Anal. Appl..

[15]  Peter Benner,et al.  Fast iterative solution of the Bethe-Salpeter eigenvalue problem using low-rank and QTT tensor approximation , 2016, J. Comput. Phys..

[16]  P. Swarztrauber THE METHODS OF CYCLIC REDUCTION, FOURIER ANALYSIS AND THE FACR ALGORITHM FOR THE DISCRETE SOLUTION OF POISSON'S EQUATION ON A RECTANGLE* , 1977 .

[17]  Ren-Cang Li,et al.  Minimization Principle for Linear Response Eigenvalue Problem with Applications , 2011 .

[18]  Ren-Cang Li,et al.  Convergence analysis of Lanczos-type methods for the linear response eigenvalue problem , 2013, J. Comput. Appl. Math..

[19]  Wen-Wei Lin,et al.  A KQZ algorithm for solving linear-response eigenvalue equations , 1992 .

[20]  S. Alexander,et al.  Analysis of a recursive least squares hyperbolic rotation algorithm for signal processing , 1988 .

[21]  Zhaojun Bai,et al.  Minimization Principles for the Linear Response Eigenvalue Problem I: Theory , 2012, SIAM J. Matrix Anal. Appl..

[22]  P. Swarztrauber A direct Method for the Discrete Solution of Separable Elliptic Equations , 1974 .

[23]  Ren-Cang Li,et al.  A symmetric structure-preserving ΓQR algorithm for linear response eigenvalue problems , 2017 .

[24]  Mark E. Casida,et al.  Time-dependent density-functional theory for molecules and molecular solids , 2009 .

[25]  L. Reining,et al.  Electronic excitations: density-functional versus many-body Green's-function approaches , 2002 .

[26]  G. Hedstrom,et al.  Numerical Solution of Partial Differential Equations , 1966 .

[27]  Andreas Savin,et al.  Electronic Excitation Energies of Molecular Systems from the Bethe–Salpeter Equation: Example of the H2 Molecule , 2013, Concepts and Methods in Modern Theoretical Chemistry, Two Volume Set.

[28]  Jerzy Stefan Respondek Numerical simulation in the partial differential equation controllability analysis with physically meaningful constraints , 2010, Math. Comput. Simul..

[29]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[30]  Roland A. Sweet Direct methods for the solution of Poisson's equation on a staggered grid , 1973 .

[31]  E. Süli,et al.  Numerical Solution of Partial Differential Equations , 2014 .

[32]  M. Dresselhaus,et al.  Exciton photophysics of carbon nanotubes. , 2007, Annual review of physical chemistry.

[33]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[34]  A. Bunse-Gerstner An analysis of the HR algorithm for computing the eigenvalues of a matrix , 1981 .