Vanadium Oxide Compounds: Structure, Properties, and Growth from the Gas Phase

The structure-driven properties of vanadium oxide have inspired enormous developments in the last decades, especially as a smart material for energy, sensors, and optoelectronics. The large variety of stable and metastable structures of vanadium oxide is discussed, based on the calculated formation energies and a broad overview of their structure-related properties. The established chemical deposition processes from the gas phase are reviewed with a particular emphasis on the implemented precursors and the obtained vanadium oxide phases. Although a significant fraction of relevant vanadium oxide compounds is achieved by these methods, there are still rewarding challenges related to their controlled elaboration and the investigation of their responsive properties.

[1]  A. Georges,et al.  Universality and Critical Behavior at the Mott Transition , 2003, Science.

[2]  A. Gusev,et al.  The disorder-order transition in cubic vanadium monoxide with vacancies in the metal sublattice , 2009 .

[3]  G. Rubloff,et al.  Cathodic ALD V2O5 thin films for high-rate electrochemical energy storage , 2013 .

[4]  I. Hevesi,et al.  Structural characterization of amorphous vanadium pentoxide thin films prepared by chemical vapour deposition /CVD/ , 1980 .

[5]  T. M. Rice,et al.  Electron Localization Induced by Uniaxial Stress in Pure V O 2 , 1975 .

[6]  Nevill Francis Mott,et al.  Metal-insulator transition in vanadium dioxide , 1975 .

[7]  J. Pereira‐Ramos,et al.  Atomic Layer Epitaxy of Vanadium Oxide Thin Films and Electrochemical Behavior in Presence of Lithium Ions , 1999 .

[8]  B. Vilquin,et al.  Insulator–metal transition of VO2 ultrathin films on silicon: evidence for an electronic origin by infrared spectroscopy , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  D. Mcwhan,et al.  Critical Pressure for the Metal-Semiconductor Transition inV2O3 , 1969 .

[10]  Carlos B. Pinheiro,et al.  Electrochromic properties of inkjet printed vanadium oxide gel on flexible polyethylene terephthalate/indium tin oxide electrodes. , 2012, ACS applied materials & interfaces.

[11]  Xu Xiao,et al.  Freestanding Mesoporous VN/CNT Hybrid Electrodes for Flexible All‐Solid‐State Supercapacitors , 2013, Advanced materials.

[12]  R. Binions,et al.  Synthesis and Functional Properties of Vanadium Oxides: V2O3, VO2, and V2O5 Deposited on Glass by Aerosol‐Assisted CVD , 2007 .

[13]  Yalin Lu,et al.  Simulation of smart windows in the ZnO/VO2/ZnS sandwiched structure with improved thermochromic properties , 2013 .

[14]  M. Isobe,et al.  Crystal growth and anisotropic magnetic properties of V3O7 , 2009 .

[15]  G. Rubloff,et al.  Ozone-Based Atomic Layer Deposition of Crystalline V2O5 Films for High Performance Electrochemical Energy Storage , 2012 .

[16]  C. H. Chen,et al.  Low temperature growth of vanadium pentoxide nanomaterials by chemical vapour deposition using VO(acac)2 as precursor , 2010 .

[17]  J. Travas-sejdic,et al.  Porous V2O5 micro/nano-tubes: Synthesis via a CVD route, single-tube-based humidity sensor and improved Li-ion storage properties , 2012 .

[18]  Sanjaya D. Perera,et al.  Manganese oxide nanorod–graphene/vanadium oxide nanowire–graphene binder-free paper electrodes for metal oxide hybrid supercapacitors , 2013 .

[19]  D. Davazoglou,et al.  Structure and electrical properties of selectively chemically vapor deposited vanadium oxide films from Vanadium tri-i-propoxy oxide vapors , 2007 .

[20]  M. Fattahi,et al.  Vanadium Pentoxide Catalyst over Carbon-Based Nanomaterials for the Oxidative Dehydrogenation of Propane , 2013 .

[21]  P. Limelette,et al.  Strain-induced pressure effect in pulsed laser deposited thin films of the strongly correlated oxide V 2 O 3 , 2006, cond-mat/0609342.

[22]  Ethan P. Shapera,et al.  Switchable plasmon-induced transparency in gold nanoarrays on vanadium dioxide film , 2013 .

[23]  T. Gustafsson,et al.  Low-temperature structure of V6O13. , 2003, Acta crystallographica. Section B, Structural science.

[24]  P. Ajayan,et al.  Building 3D structures of vanadium pentoxide nanosheets and application as electrodes in supercapacitors. , 2013, Nano letters.

[25]  Zongtao Zhang,et al.  Nanoceramic VO2 thermochromic smart glass: A review on progress in solution processing , 2012 .

[26]  F. Case,et al.  Improved VO(2) thin films for infrared switching. , 1991, Applied optics.

[27]  Ivan P. Parkin,et al.  Hybrid Aerosol Assisted and Atmospheric Pressure CVD of Gold‐Doped Vanadium Dioxide , 2008 .

[28]  Russell Binions,et al.  On the effects of electric fields in aerosol assisted chemical vapour deposition reactions of vanadyl acetylacetonate solutions in ethanol. , 2011, Journal of nanoscience and nanotechnology.

[29]  D. Lincot,et al.  Amorphous vanadium oxide films synthesised by ALCVD for lithium rechargeable batteries , 2006 .

[30]  J. Holmes,et al.  Large directional conductivity change in chemically stable layered thin films of vanadium oxide and a 1D metal complex , 2013 .

[31]  R. Binions,et al.  Templated growth of smart nanocomposite thin films: Hybrid aerosol assisted and atmospheric pressure chemical vapour deposition of vanadyl acetylacetonate, auric acid and tetraoctyl ammonium bromide , 2009 .

[32]  M. D. Banus,et al.  ELECTRICAL AND MAGNETIC PROPERTIES OF TiO AND VO. , 1972 .

[33]  N. Ravindra,et al.  Optical properties of vanadium oxides-an analysis , 2013, Journal of Materials Science.

[34]  D. W. Sheel,et al.  Intelligent window coatings: atmospheric pressure chemical vapour deposition of vanadium oxides , 2002 .

[35]  B. Dunn,et al.  Preparation of Nanotextured VO2[B] from Vanadium Oxide Aerogels , 2006 .

[36]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[37]  W. Butler,et al.  Calculated electronic and magnetic structure of rutile phase V1−xCrxO2 , 2009 .

[38]  E. Abrahams,et al.  Correlation effects in the iron pnictides , 2009, 0901.4112.

[39]  Peihong Zhang,et al.  Charge Disproportionation and Voltage‐Induced Metal–Insulator Transitions Evidenced in β‐PbxV2O5 Nanowires , 2013 .

[40]  A. Gossard,et al.  Dimerization of a linear Heisenberg chain in the insulating phases of V 1-x Cr x O 2 , 1974 .

[41]  D. W. Sheel,et al.  The Growth of Thermochromic VO2 Films on Glass by Atmospheric‐Pressure CVD: A Comparative Study of Precursors, CVD Methodology, and Substrates , 2006 .

[42]  H. Jeong,et al.  Flexible thermochromic window based on hybridized VO2/graphene. , 2013, ACS nano.

[43]  M. Nazemiyan,et al.  Record low temperature Mo doped V2O5 thermochromic thin films for optoelectronic applications , 2013 .

[44]  C. E. Tracy,et al.  Highly Stable Vanadium Oxide Cathodes Prepared by Plasma‐Enhanced Chemical Vapor Deposition , 1998 .

[45]  Lei Wang,et al.  Li−Fe−P−O2 Phase Diagram from First Principles Calculations , 2008 .

[46]  M. Kakihana,et al.  Evidence for Visible Light Photochromism of V2O5 , 2002 .

[47]  S. Kachi,et al.  Metal-insulator transition in VnO2n−1 , 1973 .

[48]  Gokul Gopalakrishnan,et al.  Three-terminal field effect devices utilizing thin film vanadium oxide as the channel layer , 2010, 1006.4373.

[49]  D. Weber,et al.  Anosovite-type V3O5: a new binary oxide of vanadium. , 2012, Inorganic chemistry.

[50]  Yijia Gu,et al.  Extended mapping and exploration of the vanadium dioxide stress-temperature phase diagram. , 2010, Nano letters.

[51]  V. Andreev,et al.  Specific features of electrical conductivity of V3O5 single crystals , 2011 .

[52]  Mathias Woydt,et al.  Switching adhesion forces by crossing the metal–insulator transition in Magnéli-type vanadium oxide crystals , 2011, Beilstein journal of nanotechnology.

[53]  D. Vernardou,et al.  Electrochemical properties of vanadium oxide coatings grown by APCVD on glass substrates , 2013 .

[54]  T. G. Owens,et al.  Hybrid density functional theory study of vanadium monoxide , 2004 .

[55]  John Robertson,et al.  Analysis of metal insulator transitions in VO2 and V2O3 for RRAMs , 2013 .

[56]  K. Kosuge The Phase Transition in VO2 , 1967 .

[57]  D. Gilmer,et al.  Anhydrous Metal Nitrates as Volatile Single Source Precursors for the CVD of Metal Oxide Films , 1998 .

[58]  Alexander Pergament,et al.  Comment on “Metal-insulator transition without structural phase transition in V2O5 film” [Appl. Phys. Lett. 98, 131907 (2011)] , 2013 .

[59]  T. Ishikawa,et al.  Hard X-ray Photoelectron Spectroscopy of Metal-Insulator Transition in V6O13 , 2010 .

[60]  Iuliana Radu,et al.  The VO2 interface, the metal-insulator transition tunnel junction, and the metal-insulator transition switch On-Off resistance , 2012 .

[61]  Honig,et al.  Metal-insulator transition in V4O7: Specific-heat measurements and interpretation. , 1985, Physical Review B (Condensed Matter).

[62]  A. Mane,et al.  Thin films of VO2 on glass by atomic layer deposition: microstructure and electrical properties , 2005 .

[63]  A. Rempel,et al.  Refinement of the V-O phase diagram in the range 25–50 at % oxygen , 2009 .

[64]  I. Parkin,et al.  Atmospheric pressure chemical vapour deposition of vanadium(V) oxide films on glass substrates from reactions of VOCl3 and VCl4 with water , 2000 .

[65]  S. Nagata,et al.  Susceptibilities of the vanadium Magneli phases V/sub n/O/sub 2n/-1 at low temperature , 1979 .

[66]  Liangbing Hu,et al.  MWCNT/V2O5 core/shell sponge for high areal capacity and power density Li-ion cathodes. , 2012, ACS nano.

[67]  G. Rossetto,et al.  MOCVD of Vanadium Oxide Films with a Novel Vanadium(III) Precursor , 2011 .

[68]  M. V. Ganduglia-Pirovano,et al.  Surface metal-insulator transition on a vanadium pentoxide (001) single crystal. , 2007, Physical review letters.

[69]  Stefano Curtarolo,et al.  High-throughput electronic band structure calculations: Challenges and tools , 2010, 1004.2974.

[70]  D. Lincot,et al.  Electrical properties of V2O5 thin films obtained by atomic layer deposition (ALD) , 2004 .

[71]  D. W. Sheel,et al.  Tungsten‐Doped Vanadium Oxides Prepared by Direct Liquid Injection MOCVD , 2007 .

[72]  S. Beke A review of the growth of V2O5 films from 1885 to 2010 , 2011 .

[73]  F. A. Chudnovskii,et al.  Insulator-metal transition in V3O5 , 1978 .

[74]  H. Fjellvåg,et al.  Atomic layer deposition of functional films for Li‐ion microbatteries , 2014 .

[75]  D. Mcwhan,et al.  Structural Aspects of the Metal-Insulator Transition in V5O9 , 1974 .

[76]  F. Sediri,et al.  Solvothermal synthesis of V4O9 flake-like morphology and its photocatalytic application in the degradation of methylene blue , 2012 .

[77]  P. Edwards,et al.  ESR spectra of V4+ ions in the semiconductor V3O7 , 1977 .

[78]  S. Dash,et al.  Novel single phase vanadium dioxide nanostructured films for methane sensing near room temperature , 2014 .

[79]  P. Canfield,et al.  Evolution of the electronic transport properties of V6O11 and V7O13 under pressure , 2013 .

[80]  S. A. Shivashankar,et al.  Microstructure and properties of VO2 thin films deposited by MOCVD from vanadyl acetylacetonate , 2002 .

[81]  Anubhav Jain,et al.  Thermal stabilities of delithiated olivine MPO4 (M = Fe, Mn) cathodes investigated using first principles calculations , 2010 .

[82]  John P. Ferraris,et al.  Vanadium Oxide Nanowire–Carbon Nanotube Binder‐Free Flexible Electrodes for Supercapacitors , 2011 .

[83]  Shixiong Zhang,et al.  Direct correlation of structural domain formation with the metal insulator transition in a VO2 nanobeam. , 2009, Nano letters.

[84]  Ying Wang,et al.  Nanostructured Vanadium Oxide Electrodes for Enhanced Lithium‐Ion Intercalation , 2006 .

[85]  P. Postorino,et al.  Optical properties across the insulator to metal transitions in vanadium oxide compounds , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[86]  C. L. Ferreira,et al.  Vanadium oxide thin films produced by magnetron sputtering from a V2O5 target at room temperature , 2013 .

[87]  T. Ruegamer,et al.  Phase‐Selective CVD of Vanadium Oxide Nanostructures , 2007 .

[88]  C. N. Berglund,et al.  Optical Properties of V O 2 between 0.25 and 5 eV , 1968 .

[89]  R. Vallée,et al.  Fabrication of high-quality VO2 thin films by ion-assisted dual ac magnetron sputtering. , 2013, ACS applied materials & interfaces.

[90]  E. V. Danilevich,et al.  Role of vanadium species in the selective oxidation of ethanol on V2O5/TiO2 catalysts , 2013, Kinetics and Catalysis.

[91]  M. Willinger,et al.  The controlled deposition of metal oxides onto carbon nanotubes by atomic layer deposition: examples and a case study on the application of V2O4 coated nanotubes in gas sensing. , 2009, Physical chemistry chemical physics : PCCP.

[92]  J. C. Kieffer,et al.  Evidence for a structurally-driven insulator-to-metal transition in VO 2 : A view from the ultrafast timescale , 2004, cond-mat/0403214.

[93]  A I Lichtenstein,et al.  Dynamical singlets and correlation-assisted Peierls transition in VO2. , 2005, Physical review letters.

[94]  Xiaonan Chen,et al.  Voltage-Triggered Ultrafast Phase Transition in Vanadium Dioxide Switches , 2013, IEEE Electron Device Letters.

[95]  A Tanaka,et al.  Inequivalent routes across the Mott transition in V2O3 explored by X-ray absorption. , 2010, Physical review letters.

[96]  S. Barth,et al.  Molecule-based chemical vapor growth of aligned SnO2 nanowires and branched SnO2/V2O5 heterostructures. , 2007, Small.

[97]  Iuliana Radu,et al.  Process Study and Characterization of VO2 Thin Films Synthesized by ALD Using TEMAV and O3 Precursors , 2012 .

[98]  Mikko Heikkilä,et al.  Atomic layer deposition and characterization of vanadium oxide thin films , 2013 .

[99]  N. Katsarakis,et al.  A study of the electrochemical performance of vanadium oxide thin films grown by atmospheric pressure chemical vapour deposition , 2011 .

[100]  D. Baldomir,et al.  Electronic structure of V4O7: charge ordering, metal-insulator transition and magnetism , 2011, 1105.5622.

[101]  S. Van den Berghe,et al.  Comparison of Thermal and Plasma-Enhanced ALD/CVD of Vanadium Pentoxide , 2009 .

[102]  Michael E. A. Warwick,et al.  Thermochromic vanadium dioxide thin films from electric field assisted aerosol assisted chemical vapour deposition , 2013 .

[103]  David H. Cobden,et al.  Measurement of a solid-state triple point at the metal–insulator transition in VO2 , 2013, Nature.

[104]  Zaiyao Fei,et al.  Photoresponse of a strongly correlated material determined by scanning photocurrent microscopy. , 2012, Nature nanotechnology.

[105]  I. Parkin,et al.  Atmospheric pressure chemical vapour deposition of tungsten doped vanadium(IV) oxide from VOCl3, water and WCl6 , 2004 .

[106]  H. Katzke,et al.  Theory of morphotropic transformations in vanadium oxides , 2003 .

[107]  V. Eyert,et al.  The vanadium Magnli phases VnO2n-1 , 2004, cond-mat/0403689.

[108]  Hua Guo,et al.  Mechanics and dynamics of the strain-induced M1-M2 structural phase transition in individual VO₂ nanowires. , 2011, Nano letters.

[109]  Long Lin,et al.  The Memristive Properties of a Single VO2 Nanowire with Switching Controlled by Self‐Heating , 2013, Advanced materials.

[110]  Ivan P. Parkin,et al.  Intelligent window coatings: Atmospheric pressure chemical vapor deposition of tungsten-doped vanadium dioxide , 2004 .

[111]  Ullrich Steiner,et al.  Enhanced Electrochromism in Gyroid‐Structured Vanadium Pentoxide , 2012, Advanced materials.

[112]  I. Parkin,et al.  Atmospheric pressure chemical vapour deposition of VO2 and VO2/TiO2 films from the reaction of VOCl3, TiCl4 and water , 2004 .

[113]  N. Ōtsuka,et al.  Growth of single phase, single crystals of V9O17☆ , 1981 .

[114]  Chunming Xu,et al.  Periodic DFT study on mechanism of selective catalytic reduction of NO via NH3 and O2 over the V2O5 (0 0 1) surface: Competitive sites and pathways , 2013 .

[115]  Ali E Aliev,et al.  Fabrication of silver vanadium oxide and V2O5 nanowires for electrochromics. , 2008, ACS nano.

[116]  Reza Abazari,et al.  Non-aggregated divanadium pentoxide nanoparticles: A one-step facile synthesis. Morphological, structural, compositional, optical properties and photocatalytic activities , 2014 .

[117]  S. Yamazaki,et al.  Synthesis, structure and magnetic properties of V4O9—A missing link in binary vanadium oxides , 2010 .

[118]  S. A. Shivashankar,et al.  Phase transformation and semiconductor-metal transition in thin films of VO2 deposited by low-pressure metalorganic chemical vapor deposition , 2002 .

[119]  Do all nuclei recoil on photoemission in compounds , 2009 .

[120]  Saad Mekhilef,et al.  Performance, materials and coating technologies of thermochromic thin films on smart windows , 2013 .

[121]  Giovanni Neri,et al.  Vanadium oxide sensing layer grown on carbon nanotubes by a new atomic layer deposition process. , 2008, Nano letters.

[122]  Volker Eyert,et al.  The metal‐insulator transitions of VO2: A band theoretical approach , 2002, Annalen der Physik.

[123]  Nicola Donato,et al.  Highly sensitive ammonia resistive sensor based on electrospun V2O5 fibers , 2012 .

[124]  D. Barreca,et al.  Highly Oriented V2O5 Nanocrystalline Thin Films by Plasma-Enhanced Chemical Vapor Deposition , 2000 .

[125]  J. S. Anderson,et al.  On the possible role of dislocations in generating ordered and disordered shear structures , 1967 .

[126]  Volker Eyert,et al.  The vanadium Magnéli phases V n O 2 n − 1 , 2004 .

[127]  A. Manthiram,et al.  Synthesis of Nanocrystalline VO 2 and Its Electrochemical Behavior in Lithium Batteries , 1997 .

[128]  Yanfeng Gao,et al.  Core-shell VO2@TiO2 nanorods that combine thermochromic and photocatalytic properties for application as energy-saving smart coatings , 2013, Scientific Reports.

[129]  A. Gavrilyuk,et al.  Photoinjection of hydrogen and the nature of a giant shift of the fundamental absorption edge in highly disordered V2O5 films. , 2011, Physical chemistry chemical physics : PCCP.

[130]  J. Galy,et al.  The crystal structure of V3O7 , 1974 .

[131]  R. Cava Crystal structures of the high temperature forms of V{sub 8}O{sub 15} and V{sub 9}O{sub 17} and structural trends in the V{sub n}O{sub 2n-1} Magneli series , 2013 .

[132]  M. Bagheri-Mohagheghi,et al.  CHARACTERIZATION AND ELECTROCHROMIC PROPERTIES OF VANADIUM OXIDE THIN FILMS PREPARED VIA SPRAY PYROLYSIS , 2013 .

[133]  H. Groult,et al.  Study of the Li+ insertion into V2O5 films deposited by CVD onto various substrates , 2007 .

[134]  H. Wriedt,et al.  The O-V (Oxygen-Vanadium) system , 1989 .

[135]  Anne C. Dillon,et al.  Layered vanadium and molybdenum oxides: batteries and electrochromics , 2009 .

[136]  S. Ramanathan,et al.  Oxide Electronics Utilizing Ultrafast Metal-Insulator Transitions , 2011 .

[137]  I. D. Brown,et al.  The inorganic crystal structure data base , 1983, J. Chem. Inf. Comput. Sci..

[138]  S. Åsbrink,et al.  X‐ray bond‐type diffractometer investigations on V3O5 in the temperature interval 298 to 480 K including the phase transition temperature Tt = 428 K , 1985 .

[139]  I. Parkin,et al.  APCVD of thermochromic vanadium dioxide thin films-solid solutions V2-xMxO2 (M = Mo, Nb) or composites VO2:SnO2 , 2005 .

[140]  H. Fjellvåg,et al.  Optical Properties of Vanadium Pentoxide Deposited by ALD , 2012 .

[141]  Ivan P. Parkin,et al.  Nano-composite thermochromic thin films and their application in energy-efficient glazing , 2010 .

[142]  P. He,et al.  High-surface vanadium oxides with large capacities for lithium-ion batteries: from hydrated aerogel to nanocrystalline VO2(B), V6O13 and V2O5 , 2011 .

[143]  F. Mezei,et al.  Change of magnetic short range order at metal-insulator phase transition , 1992 .

[144]  A. Gusev Atomic displacements in the V52O64 superstructure and the short-range order in superstoichiometric cubic VOy vanadium monoxide with metal vacancies , 2009 .

[145]  H. Groult,et al.  Vanadium Oxide Films Synthesized by CVD and Used as Positive Electrodes in Secondary Lithium Batteries , 2004 .

[146]  Ning Wang,et al.  Multifunctional overcoats on vanadium dioxide thermochromic thin films with enhanced luminous transmission and solar modulation, hydrophobicity and anti-oxidation , 2013 .

[147]  Mingdeng Wei,et al.  Supercapacitor electrode of hollow spherical V2O5 with a high pseudocapacitance in aqueous solution , 2013 .

[148]  V. Andreev,et al.  Specific features of the electrical conductivity of V6O11 , 2013 .

[149]  T. Armbruster,et al.  X-ray structural investigation of the oxyvanite (V3O5) – berdesinskiite (V2TiO5) series: V4+ substituting for octahedrally coordinated Ti4+ , 2009 .

[150]  Hong Ye,et al.  Smart or not? A theoretical discussion on the smart regulation capacity of vanadium dioxide glazing , 2014 .

[151]  Y. Tokura,et al.  Infrared-sensitive electrochromic device based on VO2 , 2013 .

[152]  Guoxiu Wang,et al.  Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries. , 2013, ACS nano.

[153]  Ivan P. Parkin,et al.  Doped and un-doped vanadium dioxide thin films prepared by atmospheric pressure chemical vapour deposition from vanadyl acetylacetonate and tungsten hexachloride: the effects of thickness and crystallographic orientation on thermochromic properties , 2007 .

[154]  C. Detavernier,et al.  Crystallization and semiconductor-metal switching behavior of thin VO2 layers grown by atomic layer deposition , 2014 .

[155]  A. Keffous,et al.  Electrical characterization of ethanol sensing device based on Vanadium oxide/Porous Si/Si structure , 2013 .

[156]  J. Galy,et al.  Comparative Structural and Electrical Studies of V2O3 and V2—xNixO3 (0 < x < 0.75) Solid Solution , 2002 .

[157]  S. Kachi,et al.  Phase diagram and some physical properties of V2O3+x∗ (0 ⩽ x ⩽ 0.080) , 1980 .

[158]  I. Povey,et al.  Atomic layer deposition for the fabrication of 3D photonic crystals structures: Growth of Al2O3 and VO2 photonic crystal systems , 2007 .

[159]  P. Adriaensens,et al.  V6O13 films by control of the oxidation state from aqueous precursor to crystalline phase. , 2013, Dalton transactions.

[160]  K. Held,et al.  Mott–Hubbard transition in V2O3 revisited , 2013, 1303.2050.

[161]  Jorge Kittl,et al.  Semiconductor-metal transition in thin VO2 films grown by ozone based atomic layer deposition , 2011 .

[162]  J. P. Remeika,et al.  Structural aspects of the metal-insulator transition in V4O7 , 1973 .

[163]  Youn-Bae Kang,et al.  Critical evaluation and thermodynamic optimization of the VO–VO2.5 system , 2012 .

[164]  K. Kosuge The phase diagram and phase transition of the V2O3−V2O5, system , 1967 .

[165]  V. Sidorov,et al.  V3O5 at high pressure: a possible heavy fermion 3d-metal oxide , 2003 .

[166]  D. N. Basov,et al.  Correlated metallic state of vanadium dioxide , 2006 .

[167]  I. Parkin,et al.  Vanadium(IV) oxide thin films on glass and silicon from the atmospheric pressure chemical vapour deposition reaction of VOCl3 and water , 2004 .

[168]  Hidekazu Tanaka,et al.  Identifying valence band structure of transient phase in VO2thin film by hard x-ray photoemission , 2011 .

[169]  Geoffrey B. Smith,et al.  The preparation of a plasmonically resonant VO2 thermochromic pigment , 2009, Nanotechnology.

[170]  Stephan Lany,et al.  Semiconductor Thermochemistry in Density Functional Calculations , 2008 .

[171]  J. Hanson,et al.  Storage of potassium ions in layered vanadium pentoxide nanofiber electrodes for aqueous pseudocapacitors. , 2013, ChemSusChem.

[172]  M. Misono,et al.  EXAFS analysis of vanadium oxide thin overlayers on silica prepared by chemical vapour deposition , 1992 .

[173]  L. Baldassarre,et al.  Electrodynamics near the metal-to-insulator transition in V 3 O 5 , 2007 .

[174]  L. Dubrovinsky,et al.  Anomalous compression and new high-pressure phases of vanadium sesquioxide, V2O3 , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[175]  R. Binions,et al.  Electric field assisted chemical vapour deposition - a new method for the preparation of highly porous supercapacitor electrodes , 2014 .