Turbulence, complexity, and solar flares

The issue of predicting solar flares is one of the most fundamental in physics, addressing issues of plasma physics, high-energy physics, and modelling of complex systems. It also poses societal consequences, with our ever-increasing need for accurate space weather forecasts. Solar flares arise naturally as a competition between an input (flux emergence and rearrangement) in the photosphere and an output (electrical current build up and resistive dissipation) in the corona. Although initially localised, this redistribution affects neighbouring regions and an avalanche occurs resulting in large scale eruptions of plasma, particles, and magnetic field. As flares are powered from the stressed field rooted in the photosphere, a study of the photospheric magnetic complexity can be used to both predict activity and understand the physics of the magnetic field. The magnetic energy spectrum and multifractal spectrum are highlighted as two possible approaches to this.

[1]  E. Bacry,et al.  Multifractal formalism for fractal signals: The structure-function approach versus the wavelet-transform modulus-maxima method. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  George E. Hale,et al.  The Magnetic Polarity of Sun-Spots , 1919 .

[3]  Rami Qahwaji,et al.  Automatic Short-Term Solar Flare Prediction Using Machine Learning and Sunspot Associations , 2007 .

[4]  G. A. Gary,et al.  A measure from line‐of‐sight magnetograms for prediction of coronal mass ejections , 2003 .

[5]  Harold Zirin,et al.  The Dependence of Large Flare Occurrence on the Magnetic Structure of Sunspots , 2000 .

[6]  M. Wheatland A Bayesian Approach to Solar Flare Prediction , 2004, astro-ph/0403613.

[7]  Alan M. Title,et al.  The solar oscillations investigation - Michelson Doppler Imager. , 1992 .

[8]  P. Bornmann,et al.  Flare rates and the McIntosh active-region classifications , 1994 .

[9]  Valentyna Abramenko,et al.  Relationship between Magnetic Power Spectrum and Flare Productivity in Solar Active Regions , 2005 .

[10]  Jack Ireland,et al.  The Bursty Nature of Solar Flare X-Ray Emission , 2007 .

[11]  Russell J. Hewett,et al.  Multiscale Analysis of Active Region Evolution , 2008 .

[12]  A. Kolmogorov Dissipation of energy in the locally isotropic turbulence , 1941, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[13]  Jack Ireland,et al.  Automated Boundary-extraction And Region-growing Techniques Applied To Solar Magnetograms , 2005 .

[14]  Valentyna Abramenko,et al.  Multifractal Analysis Of Solar Magnetograms , 2005 .

[15]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[16]  Rami Qahwaji,et al.  Automated McIntosh-Based Classification of Sunspot Groups Using MDI Images , 2008 .

[17]  H. Künzel,et al.  Die Flare-Häufigkeit in Fleckengruppen unterschiedlicher Klasse und magnetischer Struktur (Mitteilungen des Astrophysikalischen Observatoriums Potsdam Nr. 87) , 1959 .

[18]  G. Barnes,et al.  Photospheric Magnetic Field Properties of Flaring versus Flare-quiet Active Regions. II. Discriminant Analysis , 2003 .

[19]  G. A. Gary,et al.  Correlation of the Coronal Mass Ejection Productivity of Solar Active Regions with Measures of Their Global Nonpotentiality from Vector Magnetograms: Baseline Results , 2002 .

[20]  Russell J. Hewett,et al.  Multiresolution Analysis of Active Region Magnetic Structure and its Correlation with the Mount Wilson Classification and Flaring Activity , 2008, 0805.0101.

[21]  Haimin Wang,et al.  Active-Region Monitoring and Flare Forecasting – I. Data Processing and First Results , 2002 .

[22]  T. Forbes,et al.  Energy partition in two solar flare/CME events , 2004 .

[23]  Alexander Ruzmaikin,et al.  Multifractal measure of the solar magnetic field , 1993 .

[24]  E. B. Mayfield,et al.  The correlation of solar flare production with magnetic energy in active regions , 1985 .

[25]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[26]  Russell J. Hewett,et al.  Multifractal Properties of Evolving Active Regions , 2008 .

[27]  R. Canfield,et al.  The imaging vector magnetograph at Haleakala , 1996 .

[28]  Carolus J. Schrijver,et al.  A Characteristic Magnetic Field Pattern Associated with All Major Solar Flares and Its Use in Flare Forecasting , 2007 .

[29]  Manolis K. Georgoulis,et al.  Statistics, Morphology, and Energetics of Ellerman Bombs , 2002 .

[30]  G. A. Gary,et al.  Magnetic Causes of Solar Coronal Mass Ejections: Dominance of the Free Magnetic Energy over the Magnetic Twist Alone , 2006 .

[31]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[32]  R. K. Ulrich,et al.  The Global Oscillation Network Group (GONG) Project , 1996, Science.

[33]  Michael S. Wheatland,et al.  Rates of Flaring in Individual Active Regions , 2001 .

[34]  R. Giovanelli,et al.  The Relations Between Eruptions and Sunspots. , 1939 .

[35]  Philip R. Goode,et al.  Scaling Behavior of Structure Functions of the Longitudinal Magnetic Field in Active Regions on the Sun , 2002 .

[36]  Philip R. Goode,et al.  Signature of an Avalanche in Solar Flares as Measured by Photospheric Magnetic Fields , 2003 .

[37]  K. D. Leka,et al.  Photospheric Magnetic Field Properties of Flaring versus Flare-quiet Active Regions. I. Data, General Approach, and Sample Results , 2003 .

[38]  D. Todd,et al.  The Sun , 1870, Nature.

[39]  Jack Ireland,et al.  Statistics of Active Region Complexity: A Large-Scale Fractal Dimension Survey , 2005 .

[40]  William Charles Livingston,et al.  The Global Oscillation Network Group (GONG) , 1988 .

[41]  Michael Ghil,et al.  Turbulence and predictability in geophysical fluid dynamics and climate dynamics , 1985 .

[42]  P. McIntosh The classification of sunspot groups , 1990 .

[43]  B. Jurcevich,et al.  The Solar Optical Telescope for the Hinode Mission: An Overview , 2007, 0711.1715.