Structural parameters, tight bounds, and approximation for (k, r)-center
暂无分享,去创建一个
[1] Dániel Marx,et al. Parameterized Complexity and Approximation Algorithms , 2008, Comput. J..
[2] Teofilo F. GONZALEZ,et al. Clustering to Minimize the Maximum Intercluster Distance , 1985, Theor. Comput. Sci..
[3] Geevarghese Philip,et al. Hardness of r-dominating set on Graphs of Diameter (r + 1) , 2013, IPEC.
[4] Dániel Marx,et al. Efficient Approximation Schemes for Geometric Problems? , 2005, ESA.
[5] Hans L. Bodlaender,et al. Treewidth: Characterizations, Applications, and Computations , 2006, WG.
[6] Hans L. Bodlaender,et al. The algorithmic theory of treewidth , 2000, Electron. Notes Discret. Math..
[7] Kazuhisa Makino,et al. Parameterized Edge Hamiltonicity , 2014, WG.
[8] Egon Wanke,et al. The Tree-Width of Clique-Width Bounded Graphs Without Kn, n , 2000, WG.
[9] Arie M. C. A. Koster,et al. Combinatorial Optimization on Graphs of Bounded Treewidth , 2008, Comput. J..
[10] Michael Lampis,et al. Parameterized Approximation Schemes Using Graph Widths , 2013, ICALP.
[11] Glencora Borradaile,et al. Optimal dynamic program for r-domination problems over tree decompositions , 2015, IPEC.
[12] John R. Gilbert,et al. Approximating Treewidth, Pathwidth, Frontsize, and Shortest Elimination Tree , 1995, J. Algorithms.
[13] Russell Impagliazzo,et al. Which Problems Have Strongly Exponential Complexity? , 2001, J. Comput. Syst. Sci..
[14] Samir Khuller,et al. Fault tolerant K-center problems , 2000, Theor. Comput. Sci..
[15] Peter J. Slater,et al. R-Domination in Graphs , 1976, J. ACM.
[16] Peter Rossmanith,et al. Dynamic Programming on Tree Decompositions Using Generalised Fast Subset Convolution , 2009, ESA.
[17] Sven Oliver Krumke,et al. On a Generalization of the p-Center Problem , 1995, Inf. Process. Lett..
[18] Rolf Niedermeier,et al. Improved Tree Decomposition Based Algorithms for Domination-like Problems , 2002, LATIN.
[19] Torben Hagerup,et al. Parallel Algorithms with Optimal Speedup for Bounded Treewidth , 1995, SIAM J. Comput..
[20] A. Brandstädt,et al. A linear-time algorithm for connected r-domination and Steiner tree on distance-hereditary graphs , 1998 .
[21] David Eisenstat,et al. Approximating k-center in planar graphs , 2014, SODA.
[22] Jaroslav Nesetril,et al. Tree-depth, subgraph coloring and homomorphism bounds , 2006, Eur. J. Comb..
[23] Evripidis Bampis,et al. Parameterized Power Vertex Cover , 2016, WG.
[24] Bruno Courcelle,et al. Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..
[25] Yoshiko Wakabayashi,et al. The k-hop connected dominating set problem: hardness and polyhedra , 2015, Electron. Notes Discret. Math..
[26] Dániel Marx,et al. Known algorithms on graphs of bounded treewidth are probably optimal , 2010, SODA '11.
[27] Feodor F. Dragan,et al. Parameterized Approximation Algorithms for Some Location Problems in Graphs , 2017, COCOA.
[28] Vijay V. Vazirani,et al. Approximation Algorithms , 2001, Springer Berlin Heidelberg.
[29] Tomás Feder,et al. Optimal algorithms for approximate clustering , 1988, STOC '88.
[30] David B. Shmoys,et al. A unified approach to approximation algorithms for bottleneck problems , 1986, JACM.
[31] Bruno Courcelle,et al. Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width , 2000, Theory of Computing Systems.
[32] Gerhard J. Woeginger,et al. Scheduling of pipelined operator graphs , 2012, J. Sched..
[33] Judit Bar-Ilan,et al. How to Allocate Network Centers , 1993, J. Algorithms.
[34] Jan Arne Telle,et al. Algorithms for Vertex Partitioning Problems on Partial k-Trees , 1997, SIAM J. Discret. Math..
[35] Michal Pilipczuk,et al. Parameterized Algorithms , 2015, Springer International Publishing.
[36] Erik Jan van Leeuwen,et al. Faster Algorithms on Branch and Clique Decompositions , 2010, MFCS.
[37] Russell Impagliazzo,et al. On the Complexity of k-SAT , 2001, J. Comput. Syst. Sci..
[38] David Peleg,et al. The fault-tolerant capacitated K-center problem , 2015, Theor. Comput. Sci..
[39] Andreas Emil Feldmann,et al. Fixed-Parameter Approximations for k-Center Problems in Low Highway Dimension Graphs , 2015, Algorithmica.
[40] Pankaj K. Agarwal,et al. Exact and Approximation Algortihms for Clustering , 1997 .
[41] Samir Khuller,et al. The Capacitated K-Center Problem , 2000, SIAM J. Discret. Math..
[42] Erik D. Demaine,et al. Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs , 2005, TALG.
[43] Sigve Hortemo Sæther,et al. Faster algorithms for vertex partitioning problems parameterized by clique-width , 2013, Theor. Comput. Sci..
[44] Dana Moshkovitz,et al. The Projection Games Conjecture and the NP-Hardness of ln n-Approximating Set-Cover , 2012, Theory Comput..
[45] Rina Panigrahy,et al. An O(log*n) approximation algorithm for the asymmetric p-center problem , 1996, SODA '96.