Implementation of a primal–dual method for SDP on a shared memory parallel architecture

Abstract Primal–dual interior point methods and the HKM method in particular have been implemented in a number of software packages for semidefinite programming. These methods have performed well in practice on small to medium sized SDPs. However, primal–dual codes have had some trouble in solving larger problems because of the storage requirements and required computational effort. In this paper we describe a parallel implementation of the primal–dual method on a shared memory system. Computational results are presented, including the solution of some large scale problems with over 50,000 constraints.

[1]  Michael Stingl,et al.  PENNON: A code for convex nonlinear and semidefinite programming , 2003, Optim. Methods Softw..

[2]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[3]  Masakazu Kojima,et al.  Implementation and evaluation of SDPA 6.0 (Semidefinite Programming Algorithm 6.0) , 2003, Optim. Methods Softw..

[4]  Rohit Chandra,et al.  Parallel programming in openMP , 2000 .

[5]  Jack Dongarra,et al.  LAPACK Users' guide (third ed.) , 1999 .

[6]  Hans D. Mittelmann,et al.  An independent benchmarking of SDP and SOCP solvers , 2003, Math. Program..

[7]  S. Benson,et al.  DSDP: Dual-scaling algorithm for semidefinite programming , 2001 .

[8]  Jorge J. Moré,et al.  The NEOS Server , 1998 .

[9]  Masakazu Kojima,et al.  SDPARA: SemiDefinite Programming Algorithm paRAllel version , 2003, Parallel Comput..

[10]  J. Demmel,et al.  Sun Microsystems , 1996 .

[11]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[12]  Michael L. Overton,et al.  Large-scale semidefinite programs in electronic structure calculation , 2007, Math. Program..

[13]  Daniel Cremers,et al.  Binary Partitioning, Perceptual Grouping, and Restoration with Semidefinite Programming , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Jos F. Sturm,et al.  Implementation of interior point methods for mixed semidefinite and second order cone optimization problems , 2002, Optim. Methods Softw..

[15]  Samuel Burer,et al.  Computational enhancements in low-rank semidefinite programming , 2006, Optim. Methods Softw..

[16]  B. Borchers CSDP, A C library for semidefinite programming , 1999 .

[17]  Brian Borchers,et al.  A library of semidefinite programming test problems , 1999 .

[18]  Masakazu Kojima,et al.  Exploiting sparsity in primal-dual interior-point methods for semidefinite programming , 1997, Math. Program..

[19]  Samuel Burer,et al.  Computational enhancements and applications in low-rank semidefinite programming , 2007 .

[20]  Kim-Chuan Toh,et al.  Solving semidefinite-quadratic-linear programs using SDPT3 , 2003, Math. Program..

[21]  Jack Dongarra,et al.  LAPACK Users' Guide, 3rd ed. , 1999 .

[22]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[23]  S. Benson Parallel Computing on Semidefinite Programs , 2003 .

[24]  Renato D. C. Monteiro,et al.  A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization , 2003, Math. Program..

[25]  Renato D. C. Monteiro,et al.  Digital Object Identifier (DOI) 10.1007/s10107-004-0564-1 , 2004 .