Hydraulic Conductivity of the Crystalline Crust: Insights from Hydraulic Stimulation and Induced Seismicity of an Enhanced Geothermal System Pilot Reservoir at 6 Km Depth, Espoo, Southern Finland

[1]  O. Lengliné,et al.  Induced and triggered seismicity below the city of Strasbourg, France from November 2019 to January 2021 , 2021, Comptes Rendus. Géoscience.

[2]  D. Elsworth,et al.  Gas permeability and fracture compressibility for proppant-supported shale fractures under high stress , 2021 .

[3]  J. Renner,et al.  Investigations into the opening of fractures during hydraulic testing using a hybrid-dimensional flow formulation , 2021, Environmental Earth Sciences.

[4]  M. Heap,et al.  Crustal Fault Zones (CFZ) as Geothermal Power Systems: A Preliminary 3D THM Model Constrained by a Multidisciplinary Approach , 2021, Geofluids.

[5]  I. Kukkonen,et al.  Rock Surface Fungi in Deep Continental Biosphere—Exploration of Microbial Community Formation with Subsurface In Situ Biofilm Trap , 2020, Microorganisms.

[6]  A. N. Antipin,et al.  The Fennoscandian ice sheet during the Late Weichselian: geothermal evidence , 2020, International Journal of Earth Sciences.

[7]  G. Hillers,et al.  The 2018 Geothermal Reservoir Stimulation in Espoo/Helsinki, Southern Finland: Seismic Network Anatomy and Data Features , 2020, Seismological Research Letters.

[8]  C. C. Barton,et al.  Observational and Critical State Physics Descriptions of Long-Range Flow Structures , 2020, Geosciences.

[9]  C. Heim,et al.  Timing and origin of natural gas accumulation in the Siljan impact structure, Sweden , 2019, Nature Communications.

[10]  G. Dresen,et al.  Design and implementation of a traffic light system for deep geothermal well stimulation in Finland , 2019, Journal of Seismology.

[11]  G. Dresen,et al.  Controlling fluid-induced seismicity during a 6.1-km-deep geothermal stimulation in Finland , 2019, Science Advances.

[12]  Kwang Yeom Kim,et al.  First field application of cyclic soft stimulation at the Pohang Enhanced Geothermal System site in Korea , 2019, Geophysical Journal International.

[13]  Kwang Yeom Kim,et al.  How to Reduce Fluid-Injection-Induced Seismicity , 2019, Rock Mechanics and Rock Engineering.

[14]  A. Genter,et al.  Concepts of Soft Stimulation Treatments in Geothermal Reservoirs , 2018 .

[15]  Younghee Kim,et al.  Assessing whether the 2017 Mw 5.4 Pohang earthquake in South Korea was an induced event , 2018, Science.

[16]  C. Cauzzi,et al.  The November 2017 Mw 5.5 Pohang earthquake: A possible case of induced seismicity in South Korea , 2018, Science.

[17]  I. Kukkonen,et al.  Heat flow, seismic cutoff depth and thermal modeling of the Fennoscandian Shield , 2017 .

[18]  Thomas Kohl,et al.  Hydraulic performance history at the Soultz EGS reservoirs from stimulation and long-term circulation tests , 2017 .

[19]  R. Wong,et al.  Compression and crushing behavior of ceramic proppants and sand under high stresses , 2017 .

[20]  H. Nykänen,et al.  Abiotic and biotic controls on methane formation down to 2.5 km depth within the Precambrian Fennoscandian Shield , 2017 .

[21]  C. Tsang,et al.  Analysis of 6-year fluid electric conductivity logs to evaluate the hydraulic structure of the deep drill hole at Outokumpu, Finland , 2016, International Journal of Earth Sciences.

[22]  I. Kukkonen,et al.  Microbial co-occurrence patterns in deep Precambrian bedrock fracture fluids , 2016 .

[23]  P. Olasolo,et al.  Enhanced geothermal systems (EGS): A review , 2016 .

[24]  Andrei Kotousov,et al.  Conductivity and performance of hydraulic fractures partially filled with compressible proppant packs , 2015 .

[25]  T. Gleeson,et al.  Is the permeability of crystalline rock in the shallow crust related to depth, lithology or tectonic setting? , 2015 .

[26]  I. Kukkonen,et al.  Noble gas residence times of saline waters within crystalline bedrock, Outokumpu Deep Drill Hole, Finland , 2014 .

[27]  Jeoung Seok Yoon,et al.  Fatigue hydraulic fracturing by cyclic reservoir treatment enhances permeability and reduces induced seismicity , 2013 .

[28]  I. Kukkonen,et al.  Characterisation and isotopic evolution of saline waters of the Outokumpu Deep Drill Hole, Finland – Implications for water origin and deep terrestrial biosphere , 2013 .

[29]  I. Kukkonen,et al.  Geothermal studies of the Outokumpu Deep Drill Hole, Finland: Vertical variation in heat flow and palaeoclimatic implications , 2011 .

[30]  R. Jung,et al.  Hydromechanical analyses of the hydraulic stimulation of borehole Basel 1 , 2011 .

[31]  Ingrid Stober,et al.  Depth- and pressure-dependent permeability in the upper continental crust: data from the Urach 3 geothermal borehole, southwest Germany , 2011 .

[32]  Albert Genter,et al.  Fractures, hydrothermal alterations and permeability in the Soultz Enhanced Geothermal System , 2010 .

[33]  S. Ingebritsen,et al.  Permeability of the Continental Crust: Dynamic Variations Inferred from Seismicity and Metamorphism , 2010 .

[34]  Markus Häring,et al.  Characterisation of the Basel 1 enhanced geothermal system , 2008 .

[35]  Eoin L. Brodie,et al.  Long-Term Sustainability of a High-Energy, Low-Diversity Crustal Biome , 2006, Science.

[36]  M. Rabinowicz,et al.  Modeling the coupling between free and forced convection in a vertical permeable slot: implications for the heat production of an Enhanced Geothermal System , 2006 .

[37]  K. Pruess Enhanced geothermal systems (EGS) using CO2 as working fluid - A novelapproach for generating renewable energy with simultaneous sequestration of carbon , 2006 .

[38]  Darius Mottaghy,et al.  New heat flow data from the immediate vicinity of the Kola super-deep borehole: Vertical variation in heat flow confirmed and attributed to advection , 2005 .

[39]  M. Zoback,et al.  Determination of stress orientation and magnitude in deep wells , 2003 .

[40]  A. Jõeleht,et al.  Weichselian temperatures from geothermal heat flow data , 2003 .

[41]  Philippe Négrel,et al.  Exotic stable isotope compositions of saline waters and brines from the crystalline basement , 2002 .

[42]  M. Zoback,et al.  How faulting keeps the crust strong , 2000 .

[43]  M. Zoback,et al.  Fracture permeability and in situ stress to 7 km depth in the KTB scientific drillhole , 2000 .

[44]  S. Ingebritsen,et al.  Geological implications of a permeability-depth curve for the continental crust , 1999 .

[45]  R. Stanfors,et al.  Overview of geological and hydrogeological conditions of the Äspö hard rock laboratory site , 1999 .

[46]  R. Parker The Rosemanowes HDR project 1983–1991 , 1999 .

[47]  Y. Popov,et al.  New geothermal data from the Kola superdeep well SG-3 , 1999 .

[48]  S. Ingebritsen,et al.  Permeability of the continental crust: Implications of geothermal data and metamorphic systems , 1999 .

[49]  I. Kukkonen,et al.  Anomalously low heat flow density in eastern Karelia, Baltic Shield: a possible palaeoclimatic signature , 1998 .

[50]  Ernst Huenges,et al.  The permeable crust: Geohydraulic properties down to 9101 m depth , 1997 .

[51]  N. Odling,et al.  Permeability and stress in crystalline rocks , 1996 .

[52]  I. Kukkonen Thermal aspects of groundwater circulation in bedrock and its effect on crustal geothermal modelling in Finland, the central Fennoscandian Shield , 1995 .

[53]  C. Clauser,et al.  Simulation of heat transfer at the Kola deep-hole site: implications for advection, heat refraction and palaeoclimatic effects , 1994 .

[54]  C. Clauser Permeability of crystalline rocks , 1992 .

[55]  C. Ehlig-Economides Use of the Pressure Derivative for Diagnosing Pressure-Transient Behavior , 1988 .

[56]  P. Smalley,et al.  Sr isotopic evidence for discrete saline components in stratified ground waters from crystalline bedrock, Outokumpu, Finland , 1988 .

[57]  I. Kukkonen,et al.  Geochemistry and origin of saline groundwaters in the Fennoscandian Shield , 1988 .

[58]  W. Brace Permeability of crystalline rocks: New in situ measurements , 1984 .

[59]  L. Smith,et al.  On the thermal effects of groundwater flow: 1. Regional scale systems , 1983 .

[60]  P. Fritz,et al.  Saline groundwaters in the Canadian Shield — A first overview , 1982 .

[61]  D. York,et al.  40Ar-39Ar ages of scandinavian impact structures: I Mien and Siljan , 1978 .

[62]  S. Wiemer,et al.  Soft stimulation treatment of geothermal well RV-43 to meet the growing heat demand of Reykjavik , 2021 .

[63]  Shyi-Min Lu,et al.  A global review of enhanced geothermal system (EGS) , 2018 .

[64]  H. Holl,et al.  Lessons learned from the Habanero EGS Project , 2017 .

[65]  C. Barton,et al.  Habanero Field - Structure and State of Stress , 2015 .

[66]  P. Leary,et al.  Lognormality, δκ~ κ δφ, EGS, and All That , 2014 .

[67]  P. Auvinen,et al.  Microbiological sampling and analysis of the Outokumpu Deep Borehole biosphere in 2007-2008 , 2011 .

[68]  I. Stober,et al.  Hydraulic properties of the crystalline basement , 2007 .

[69]  R. Seale,et al.  Effective Stimulation of Horizontal Wells - A New Completion Method , 2006 .

[70]  P. Malik,et al.  The Scaling of Hydraulic Properties in Granitic Rocks , 2000 .

[71]  I. Stober,et al.  Hydraulic Properties of the Upper Continental Crust: data from the Urach 3 geothermal well , 2000 .

[72]  Karsten Pruess,et al.  Integral solutions for transient fluid flow through a porous medium with pressure-dependent permeability , 2000 .

[73]  I. Stober,et al.  The Composition of Groundwater in the Continental Crystalline Crust , 2000 .