SPECTRAL PROPERTIES OF REVERSIBLE ONE-DIMENSIONAL CELLULAR AUTOMATA
暂无分享,去创建一个
[1] D. Cvetkovic,et al. Spectra of graphs : theory and application , 1995 .
[2] E. F. Moore. Machine Models of Self-Reproduction , 1962 .
[3] Jarkko Kari,et al. On the Inverse Neighborhoods of Reversible Cellular Automata , 1992 .
[4] J. Kari. Representation of reversible cellular automata with block permutations , 1996, Mathematical systems theory.
[5] H. McIntosh. Reversible Cellular Automata , 1991 .
[6] G. Rozenberg,et al. Lindenmayer Systems: Impacts on Theoretical Computer Science, Computer Graphics, and Developmental Biology , 2001 .
[7] Jarkko Kari,et al. Linear Cellular Automata with Multiple State Variables , 2000, STACS.
[8] Klaus Sutner,et al. Linear Cellular Automata and de Bruijn Automata , 1999 .
[9] Masakazu Nasu,et al. Local maps inducing surjective global maps of one-dimensional tessellation automata , 1977, Mathematical systems theory.
[10] J. Schwartz,et al. Theory of Self-Reproducing Automata , 1967 .
[11] B. Weiss. Subshifts of finite type and sofic systems , 1973 .
[12] Touh Mora,et al. Autómatas celulares lineales reversibles y permutaciones en bloque , 2000 .
[13] J. Myhill. The converse of Moore’s Garden-of-Eden theorem , 1963 .
[14] G. A. Hedlund. Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.