BOOK REVIEW Environmental

[1]  A. Agrawal,et al.  Selection, Epistasis, and Parent‐of‐Origin Effects on Deleterious Mutations across Environments in Drosophila melanogaster , 2009, The American Naturalist.

[2]  A. Agrawal,et al.  The effect of pathogens on selection against deleterious mutations in Drosophila melanogaster , 2009, Journal of evolutionary biology.

[3]  M. Kirkpatrick Patterns of quantitative genetic variation in multiple dimensions , 2009, Genetica.

[4]  Rafael Sanjuán,et al.  A Network Model for the Correlation between Epistasis and Genomic Complexity , 2008, PloS one.

[5]  J. Conner,et al.  Fitness Effects of Mutation Accumulation in a Natural Outbred Population of Wild Radish (Raphanus raphanistrum): Comparison of Field and Greenhouse Environments , 2008, Evolution; international journal of organic evolution.

[6]  R. Korona,et al.  Interactions Between Stressful Environment and Gene Deletions Alleviate the Expected Average Loss of Fitness in Yeast , 2008, Genetics.

[7]  L. Chao,et al.  Understanding the Evolutionary Fate of Finite Populations: The Dynamics of Mutational Effects , 2007, PLoS biology.

[8]  Thomas Lenormand,et al.  Distributions of epistasis in microbes fit predictions from a fitness landscape model , 2007, Nature Genetics.

[9]  R. Korona,et al.  Epistatic buffering of fitness loss in yeast double deletion strains , 2007, Nature Genetics.

[10]  Ronald W. Davis,et al.  Systematic pathway analysis using high-resolution fitness profiling of combinatorial gene deletions , 2007, Nature Genetics.

[11]  T. Lenormand,et al.  THE FITNESS EFFECT OF MUTATIONS ACROSS ENVIRONMENTS: A SURVEY IN LIGHT OF FITNESS LANDSCAPE MODELS , 2006, Evolution; international journal of organic evolution.

[12]  C. Baer,et al.  Cumulative Effects of Spontaneous Mutations for Fitness in Caenorhabditis: Role of Genotype, Environment and Stress , 2006, Genetics.

[13]  Rafael Sanjuán,et al.  Epistasis correlates to genomic complexity , 2006, Proceedings of the National Academy of Sciences.

[14]  T. Lenormand,et al.  A GENERAL MULTIVARIATE EXTENSION OF FISHER'S GEOMETRICAL MODEL AND THE DISTRIBUTION OF MUTATION FITNESS EFFECTS ACROSS SPECIES , 2006, Evolution; international journal of organic evolution.

[15]  D. H. Reed,et al.  Inbreeding depression in benign and stressful environments , 2005, Heredity.

[16]  J. D. Fry,et al.  Widespread Correlations Between Dominance and Homozygous Effects of Mutations: Implications for Theories of Dominance , 2005, Genetics.

[17]  S. Elena,et al.  Epistasis and the Adaptability of an RNA Virus , 2005, Genetics.

[18]  L. Chao,et al.  The Coupon Collector and the Suppressor Mutation , 2005, Genetics.

[19]  R. Lenski,et al.  Parasites and mutational load: an experimental test of a pluralistic theory for the evolution of sex , 2005, Proceedings of the Royal Society B: Biological Sciences.

[20]  G. Wagner,et al.  The Population Genetic Theory of Hidden Variation and Genetic Robustness , 2004, Genetics.

[21]  Rafael Sanjuán,et al.  The contribution of epistasis to the architecture of fitness in an RNA virus. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[22]  R. Lenski,et al.  Pervasive joint influence of epistasis and plasticity on mutational effects in Escherichia coli , 2004, Nature Genetics.

[23]  Gary D Bader,et al.  Global Mapping of the Yeast Genetic Interaction Network , 2004, Science.

[24]  R. Korona,et al.  Small fitness effects and weak genetic interactions between deleterious mutations in heterozygous loci of the yeast Saccharomyces cerevisiae. , 2003, Genetical research.

[25]  S. Leibler,et al.  Environmental stresses can alleviate the average deleterious effect of mutations , 2003, Journal of biology.

[26]  M. Lynch,et al.  TOWARD A REALISTIC MODEL OF MUTATIONS AFFECTING FITNESS , 2003, Evolution; international journal of organic evolution.

[27]  J. D. Fry,et al.  Environment dependence of mutational parameters for viability in Drosophila melanogaster. , 2002, Genetics.

[28]  R. Lenski,et al.  Contribution of individual random mutations to genotype-by-environment interactions in Escherichia coli , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[29]  P. Cheptou,et al.  Inbreeding depression under intraspecific competition in a highly outcrossing population of Crepis sancta (Asteraceae): evidence for frequency-dependent variation. , 2001, American journal of botany.

[30]  A. Kondrashov,et al.  Whole-genome effects of ethyl methanesulfonate-induced mutation on nine quantitative traits in outbred Drosophila melanogaster. , 2001, Genetics.

[31]  B. Garvik,et al.  Principles for the Buffering of Genetic Variation , 2001, Science.

[32]  S. Leal Genetics and Analysis of Quantitative Traits , 2001 .

[33]  R H Borts,et al.  Environmental stress and mutational load in diploid strains of the yeast Saccharomyces cerevisiae. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[34]  M. Whitlock,et al.  FACTORS AFFECTING THE GENETIC LOAD IN DROSOPHILA: SYNERGISTIC EPISTASIS AND CORRELATIONS AMONG FITNESS COMPONENTS , 2000, Evolution; international journal of organic evolution.

[35]  M. Lynch,et al.  THE FITNESS EFFECTS OF SPONTANEOUS MUTATIONS IN CAENORHABDITIS ELEGANS , 2000, Evolution; international journal of organic evolution.

[36]  J. Bundgaard,et al.  Does inbreeding affect the extinction risk of small populations?: predictions from Drosophila , 2000 .

[37]  P. Cheptou,et al.  Effects of competition on lifetime estimates of inbreeding depression in the outcrossing plant Crepis sancta (Asteraceae) , 2000 .

[38]  A. Hoffmann,et al.  Environmental Stress as an Evolutionary Force , 2000 .

[39]  R. Korona GENETIC LOAD OF THE YEAST SACCHAROMYCES CEREVISIAE UNDER DIVERSE ENVIRONMENTAL CONDITIONS , 1999, Evolution; international journal of organic evolution.

[40]  L. Chao,et al.  Evolution by small steps and rugged landscapes in the RNA virus phi6. , 1999, Genetics.

[41]  Hoffmann,et al.  Heritable variation and evolution under favourable and unfavourable conditions. , 1999, Trends in ecology & evolution.

[42]  S. Lindquist,et al.  Hsp90 as a capacitor for morphological evolution , 1998, Nature.

[43]  H. A. Orr,et al.  THE POPULATION GENETICS OF ADAPTATION: THE DISTRIBUTION OF FACTORS FIXED DURING ADAPTIVE EVOLUTION , 1998, Evolution; international journal of organic evolution.

[44]  P. Keightley,et al.  Population genetics: Surviving under mutation pressure , 1998, Current Biology.

[45]  B. Charlesworth The effect of synergistic epistasis on the inbreeding load. , 1998, Genetical research.

[46]  R. Lenski,et al.  Test of synergistic interactions among deleterious mutations in bacteria , 1997, Nature.

[47]  S. Shabalina,et al.  Rapid decline of fitness in panmictic populations of Drosophila melanogaster maintained under relaxed natural selection. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[48]  R. Hoekstra,et al.  TEST OF INTERACTION BETWEEN GENETIC MARKERS THAT AFFECT FITNESS IN ASPERGILLUS NIGER , 1997, Evolution; international journal of organic evolution.

[49]  P. Keightley Metabolic models of selection response. , 1996, Journal of theoretical biology.

[50]  A. Kondrashov,et al.  Genotype—environment interactions and the estimation of the genomic mutation rate in Drosophila melanogaster , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[51]  L. Wolfe INBREEDING DEPRESSION IN HYDROPHYLLUM APPENDICULATUM: ROLE OF MATERNAL EFFECTS, CROWDING, AND PARENTAL MATING HISTORY , 1993, Evolution; international journal of organic evolution.

[52]  D. Ehrhardt,et al.  ENHANCEMENT OF INBREEDING DEPRESSION BY DOMINANCE AND SUPPRESSION IN IMPATIENS CAPENSIS , 1990, Evolution; international journal of organic evolution.

[53]  D. Ehrhardt,et al.  Light-Depedent Dominance and Suppression in Experimental Radish Populations , 1986 .

[54]  Jacob Weiner,et al.  Size Hierarchies in Experimental Populations of Annual Plants , 1985 .

[55]  D. Waller DIFFERENCES IN FITNESS BETWEEN SEEDLINGS DERIVED FROM CLEISTOGAMOUS AND CHASMOGAMOUS FLOWERS IN IMPATIENS CAPENSIS , 1984, Evolution; international journal of organic evolution.

[56]  A. Kondrashov Selection against harmful mutations in large sexual and asexual populations. , 1982, Genetical research.

[57]  M. M. Dawood,et al.  The effect of larval interaction on viability in Drosophila melanogaster. 3. Effects of biotic residues. , 1969, Genetics.

[58]  M. Kimura,et al.  The mutational load with epistatic gene interactions in fitness. , 1966, Genetics.

[59]  R. Lewontin,et al.  Interaction of genotypes determining viability in Drosophila busckii. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[60]  J. R. King,et al.  Experimental Studies on Relative Viability in Drosophila Melanogaster. , 1961, Genetics.

[61]  H. W. Lewis Studies on a melanoma-producing lethal in Drosophila , 1954 .

[62]  R. Punnett,et al.  The Genetical Theory of Natural Selection , 1930, Nature.

[63]  G. Church,et al.  Modular epistasis in yeast metabolism , 2005, Nature Genetics.

[64]  M. Lynch,et al.  RAPID FITNESS RECOVERY IN MUTATIONALLY DEGRADED LINES OF , 2003 .

[65]  E. Szathmáry,et al.  Do deleterious mutations act synergistically? Metabolic control theory provides a partial answer. , 1993, Genetics.

[66]  P. Parsons Evolutionary Rates under Environmental Stress , 1987 .

[67]  J. Crow,et al.  Mutations affecting fitness in Drosophila populations. , 1977, Annual review of genetics.

[68]  K. Bakker An Analysis of Factors Which Determine Success in Competition for Food Among Larvae of Drosophila Melanogaster , 1962 .