The draft genome reveals early duplication event in Pterocarpus santalinus: an endemic timber species

[1]  Guoyue Zhong,et al.  Comparative analyses of five complete chloroplast genomes from the endemic genus Cremanthodium (Asteraceae) in Himalayan and adjacent areas , 2023, Physiology and Molecular Biology of Plants.

[2]  Jianwei W. Huang,et al.  A de novo assembled high-quality chromosome-scale Trifolium pratense genome and fine-scale phylogenetic analysis , 2022, BMC Plant Biology.

[3]  U. Mathesius Are legumes different? Origins and consequences of evolving nitrogen fixing symbioses. , 2022, Journal of plant physiology.

[4]  R. Warrier,et al.  De novo transcriptome assembly and development of EST-SSR markers for Pterocarpus santalinus L. f. (Red sanders), a threatened and endemic tree of India , 2022, Genetic Resources and Crop Evolution.

[5]  Tracey A Ruhlman,et al.  Highly Resolved Papilionoid Legume Phylogeny Based on Plastid Phylogenomics , 2022, Frontiers in Plant Science.

[6]  K. Ulaganathan,et al.  Reference-based assembly of chloroplast genome from leaf transcriptome data of Pterocarpus santalinus , 2021, 3 Biotech.

[7]  Sudhir Kumar,et al.  MEGA11: Molecular Evolutionary Genetics Analysis Version 11 , 2021, Molecular biology and evolution.

[8]  Y. Hu,et al.  Nuclear Phylotranscriptomics/Phylogenomics Support Numerous Polyploidization Events and Hypotheses for the Evolution of Rhizobial Nitrogen-Fixing Symbiosis in Fabaceae. , 2021, Molecular plant.

[9]  Ben Fulton,et al.  CAFE 5 models variation in evolutionary rates among gene families , 2020, Bioinform..

[10]  Silvio C. E. Tosatto,et al.  Pfam: The protein families database in 2021 , 2020, Nucleic Acids Res..

[11]  Łukasz Kreft,et al.  TRAPID 2.0: a web application for taxonomic and functional analysis of de novo transcriptomes , 2020, bioRxiv.

[12]  Jue Ruan,et al.  SMARTdenovo: a de novo assembler using long noisy reads , 2020, GigaByte.

[13]  Daping Xu,et al.  Comparative Analyses of Five Complete Chloroplast Genomes from the Genus Pterocarpus (Fabacaeae) , 2020, International journal of molecular sciences.

[14]  Yoshinori Fukasawa,et al.  LongQC: A Quality Control Tool for Third Generation Sequencing Long Read Data , 2020, G3: Genes, Genomes, Genetics.

[15]  Yoko Sato,et al.  KEGG Mapper for inferring cellular functions from protein sequences , 2019, Protein science : a publication of the Protein Society.

[16]  C. Kidner,et al.  Large‐scale genomic sequence data resolve the deepest divergences in the legume phylogeny and support a near‐simultaneous evolutionary origin of all six subfamilies , 2019, The New phytologist.

[17]  Carolyn J. Lawrence-Dill,et al.  GenomeQC: a quality assessment tool for genome assemblies and gene structure annotations , 2019, BMC Genomics.

[18]  Xun Xu,et al.  One thousand plant transcriptomes and the phylogenomics of green plants , 2019, Nature.

[19]  O. Winther,et al.  Detecting sequence signals in targeting peptides using deep learning , 2019, Life Science Alliance.

[20]  M. Luckow,et al.  Extrafloral nectaries in Leguminosae: phylogenetic distribution, morphological diversity and evolution , 2019, Australian Systematic Botany.

[21]  Jonathan Wood,et al.  Identifying and removing haplotypic duplication in primary genome assemblies , 2019, bioRxiv.

[22]  Q. Xia,et al.  OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species , 2019, Nucleic Acids Res..

[23]  Patricia P. Chan,et al.  tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes , 2019, bioRxiv.

[24]  Yu Lin,et al.  Assembly of long, error-prone reads using repeat graphs , 2018, Nature Biotechnology.

[25]  A. Paterson,et al.  Gene duplication and evolution in recurring polyploidization–diploidization cycles in plants , 2019, Genome Biology.

[26]  Konstantinos D. Tsirigos,et al.  SignalP 5.0 improves signal peptide predictions using deep neural networks , 2019, Nature Biotechnology.

[27]  Yves Van de Peer,et al.  wgd—simple command line tools for the analysis of ancient whole-genome duplications , 2018, Bioinform..

[28]  J. A. Teixeira da Silva,et al.  Red sandalwood (Pterocarpus santalinus L. f.): biology, importance, propagation and micropropagation , 2018, Journal of Forestry Research.

[29]  Yiming Yu,et al.  shinyCircos: an R/Shiny application for interactive creation of Circos plot , 2018, Bioinform..

[30]  D. Soltis,et al.  Factors promoting polyploid persistence and diversification and limiting diploid speciation during the K-Pg interlude. , 2018, Current opinion in plant biology.

[31]  Michael S. Barker,et al.  Impact of whole-genome duplication events on diversification rates in angiosperms. , 2018, American journal of botany.

[32]  Han Fang,et al.  GenomeScope: Fast reference-free genome profiling from short reads , 2016, bioRxiv.

[33]  Sudhir Kumar,et al.  TimeTree: A Resource for Timelines, Timetrees, and Divergence Times. , 2017, Molecular biology and evolution.

[34]  Uwe Scholz,et al.  MISA-web: a web server for microsatellite prediction , 2017, Bioinform..

[35]  S. Koren,et al.  Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation , 2016, bioRxiv.

[36]  Rafael Barbosa Pinto,et al.  A new subfamily classification of the leguminosae based on a taxonomically comprehensive phylogeny , 2017 .

[37]  Niranjan Nagarajan,et al.  Fast and accurate de novo genome assembly from long uncorrected reads. , 2017, Genome research.

[38]  Ge Gao,et al.  PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants , 2016, Nucleic Acids Res..

[39]  James K. Hane,et al.  A comprehensive draft genome sequence for lupin (Lupinus angustifolius), an emerging health food: insights into plant–microbe interactions and legume evolution , 2016, Plant biotechnology journal.

[40]  P. S. Ward,et al.  Macroevolutionary assembly of ant/plant symbioses: Pseudomyrmex ants and their ant-housing plants in the Neotropics , 2015, Proceedings of the Royal Society B: Biological Sciences.

[41]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[42]  Daniele Silvestro,et al.  Revisiting the origin and diversification of vascular plants through a comprehensive Bayesian analysis of the fossil record , 2015, The New phytologist.

[43]  G. Joshi,et al.  Pterocarpus santalinus (Red Sanders) an Endemic, Endangered Tree of India: Current Status, Improvement and the Future , 2014 .

[44]  Christina A. Cuomo,et al.  Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement , 2014, PloS one.

[45]  Chao Xie,et al.  Fast and sensitive protein alignment using DIAMOND , 2014, Nature Methods.

[46]  Steven J. M. Jones,et al.  Insights into Conifer Giga-Genomes1 , 2014, Plant Physiology.

[47]  Guy Baele,et al.  Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous–Paleogene boundary , 2014, Genome research.

[48]  C. Cleal,et al.  The plant fossil record reflects just two great extinction events , 2014 .

[49]  Matthew Fraser,et al.  InterProScan 5: genome-scale protein function classification , 2014, Bioinform..

[50]  R. Pennington,et al.  Reconstructing the deep-branching relationships of the papilionoid legumes , 2013 .

[51]  Á. Etcheverry,et al.  The explosive pollination mechanism in Papilionoideae (Leguminosae): an analysis with three Desmodium species , 2013, Plant Systematics and Evolution.

[52]  Alexey A. Gurevich,et al.  QUAST: quality assessment tool for genome assemblies , 2013, Bioinform..

[53]  Y. Iwasa,et al.  Global legume diversity assessment: Concepts, key indicators, and strategies , 2013 .

[54]  K. K. I. U. Arunakumara,et al.  Pterocarpus santalinus Linn. f. (Rath handun): A review of its botany, uses, phytochemistry and pharmacology , 2012 .

[55]  S. Raju Red Sanders as a Stratigraphic Guide in The Correlation of The Cuddapah Formations , 2012 .

[56]  Pablo Cingolani,et al.  © 2012 Landes Bioscience. Do not distribute. , 2022 .

[57]  Carl Kingsford,et al.  A fast, lock-free approach for efficient parallel counting of occurrences of k-mers , 2011, Bioinform..

[58]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[59]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[60]  Peter F. Hallin,et al.  RNAmmer: consistent and rapid annotation of ribosomal RNA genes , 2007, Nucleic acids research.

[61]  M. Borodovsky,et al.  Gene identification in novel eukaryotic genomes by self-training algorithm , 2005, Nucleic acids research.

[62]  M. Wojciechowski,et al.  Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. , 2005, Systematic biology.

[63]  Burkhard Morgenstern,et al.  AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints , 2005, Nucleic Acids Res..

[64]  Nansheng Chen,et al.  Using RepeatMasker to Identify Repetitive Elements in Genomic Sequences , 2009, Current protocols in bioinformatics.

[65]  M. Lynch,et al.  The evolutionary fate and consequences of duplicate genes. , 2000, Science.

[66]  A. Nagaraju,et al.  Geobotany of red sanders (Pterocarpus santalinus) – a case study from the southeastern portion of Andhra Pradesh , 1999 .

[67]  Ario,et al.  The origin of the legumes is a complex paleopolyploid phylogenomic tangle closely associated with the Cretaceous–Paleogene (K–Pg) mass extinction event , 2020 .

[68]  D. Soltis,et al.  Plant genomes: Markers of evolutionary history and drivers of evolutionary change , 2020, PLANTS, PEOPLE, PLANET.

[69]  Stephen Ficklin,et al.  Structural and Functional Annotation of Eukaryotic Genomes with GenSAS. , 2019, Methods in molecular biology.

[70]  M. K. Swamy,et al.  Genetic Diversity and Conservation of Pterocarpus santalinus L.f. Through Molecular Approaches , 2019, Red Sanders: Silviculture and Conservation.

[71]  Minoru Kanehisa,et al.  KEGG Bioinformatics Resource for Plant Genomics and Metabolomics. , 2016, Methods in molecular biology.

[72]  C. N. Stewart,et al.  Multiple polyploidy events in the early radiation of nodulating and nonnodulating legumes. , 2015, Molecular biology and evolution.

[73]  Á. Etcheverry,et al.  The explosive pollination mechanism in Papilionoideae (Leguminosae): an analysis with three Desmodium species , 2013, Plant Systematics and Evolution.

[74]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..