Two-dimensional Ising-like model with specific edge effects for spin-crossover nanoparticles: A Monte Carlo study

We analyzed the size effect of spin-crossover transition nanoparticles in a two-dimensional core-shell model, where the edge atoms are constrained to the high-spin (HS) state. Using Monte Carlo (MC) simulations, we showed that this specific edge effect lowers the equilibrium temperature and enhances the HS residual at low temperature; these results are in very good agreement with recent experimental data. Within a very simple working assumption, we obtained an analytical expression for the size dependence of the equilibrium temperature that is in excellent agreement with the MC results. The model leads to a nontrivial size dependence of the hysteresis width, which is similar to a\char22{}size-dependent\char22{}negative pressure effect induced by the HS edges. To reach the best agreement with experimental data, we accounted for the size distribution of the experimental samples.

[1]  A. Zwick,et al.  Selective photoswitching of the binuclear spin crossover compound {[Fe(bt)(NCS)2]2(bpm)} into two distinct macroscopic phases. , 2005, Physical review letters.

[2]  P. Gütlich,et al.  Light-induced excited spin state trapping in a transition-metal complex: The hexa-1-propyltetrazole-iron (II) tetrafluoroborate spin-crossover system , 1984 .

[3]  Jean-François Létard,et al.  Nanoparticles of iron(II) spin-crossover. , 2008, Chemical communications.

[4]  O. Kahn Spin-crossover molecular materials , 1996 .

[5]  J. McGarvey,et al.  One shot laser pulse induced reversible spin transition in the spin-crossover complex [Fe(C4H4N2){Pt(CN)4}] at room temperature. , 2005, Angewandte Chemie.

[6]  Monte Carlo studies on small Ising systems , 1977 .

[7]  Epiphane Codjovi,et al.  A spin transition system with a thermal hysteresis at room temperature , 1993 .

[8]  Philipp Gütlich,et al.  Thermal and Optical Switching of Iron(II) Complexes , 1994 .

[9]  M. Fisher,et al.  Bounded and Inhomogeneous Ising Models. I. Specific-Heat Anomaly of a Finite Lattice , 1969 .

[10]  K. Boukheddaden,et al.  Metastable states of an Ising-like thermally bistable system. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  A. Hauser,et al.  Pressure Study of the Thermal Spin Transition and the High-Spin → Low-Spin Relaxation in the R3̄ and P1̄ Crystallographic Phases of [Zn1-xFex(ptz)6](BF4)2 Single Crystals (x = 0.1, 0.32, and 1; ptz = 1-n-propyltetrazole) , 1997 .

[12]  H. Goodwin,et al.  The discontinuous high-spin (5T2) .dblharw. low-spin (1A1) transition in solid bis(1,10-phenanthroline-2-carbaldehyde phenylhydrazone)iron(II) bis(tetrafluoroborate): hysteresis effects, concurrent crystallographic phase change, entropy of the transition, and effect of pressure , 1984 .

[13]  Odile Stéphan,et al.  Spin-crossover coordination nanoparticles. , 2008, Inorganic chemistry.

[14]  H. C. Bolton,et al.  Monte Carlo studies of the kinetic Ising model , 1976 .

[15]  Philipp Gütlich,et al.  Light-induced excited-spin-state trapping in iron(II) spin-crossover systems. Optical spectroscopic and magnetic susceptibility study , 1985 .

[16]  M. Goiran,et al.  Dynamic response of the spin-crossover solid C o ( H 2 ( fsa ) 2 e n ) ( py ) 2 to a pulsed magnetic field , 2002 .

[17]  J. Real,et al.  Cooperative spin crossover behavior in cyanide-bridged Fe(II)-M(II) bimetallic 3D Hofmann-like networks (M = Ni, Pd, and Pt). , 2001, Inorganic chemistry.

[18]  J. G. Haasnoot,et al.  Unique high-spin-low-spin transition of the central ion in a linear, trinuclear iron(II) triazole compound , 1983 .

[19]  G. Molnár,et al.  Observation of a thermal hysteresis loop in the dielectric constant of spin crossover complexes: towards molecular memory devices , 2003 .

[20]  Lee,et al.  Method to study relaxation of metastable phases: Macroscopic mean-field dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  E. König Nature and dynamics of the spin-state interconversion in metal complexes , 1991 .

[22]  Christophe Vieu,et al.  Soft lithographic patterning of spin crossover nanoparticles. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[23]  P. Gütlich,et al.  The influence of hydrostatic pressure on hysteresis phase transition in spin crossover compounds , 1999 .

[24]  Kamel Boukheddaden,et al.  Dynamical model for spin-crossover solids. I. Relaxation effects in the mean-field approach , 2000 .

[25]  P. Gütlich,et al.  Spin Crossover Phenomenon in Nanocrystals and Nanoparticles of [Fe(3-Fpy)2M(CN)4] (MII = Ni, Pd, Pt) Two-Dimensional Coordination Polymers , 2010 .

[26]  Philipp Gütlich,et al.  Spin crossover in iron(II)-complexes , 1981 .

[27]  E. Rivière,et al.  Thermo- and photoswitchable spin-crossover nanoparticles of an iron(II) complex trapped in transparent silica thin films. , 2010, Dalton transactions.

[28]  Eugenio Coronado,et al.  Tuning size and thermal hysteresis in bistable spin crossover nanoparticles. , 2010, Inorganic chemistry.

[29]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[30]  Laure Catala,et al.  Functional coordination nanoparticles. , 2009, Inorganic chemistry.

[31]  B. Gallois,et al.  Structural changes associated with the spin transition in bis(isothiocyanato)bis(1,10-phenanthroline)iron: a single-crystal x-ray investigation , 1990 .

[32]  Shuji Abe,et al.  Thermal hysteresis loop of the spin-state in nanoparticles of transition metal complexes: Monte Carlo simulations on an Ising-like model. , 2005, Chemical communications.

[33]  W. Nicolazzi,et al.  Two-variable anharmonic model for spin-crossover solids : A like-spin domains interpretation , 2008 .

[34]  G. Ritter,et al.  Effect of a simultaneous change of temperature and pressure on the spin-state transition in bis(thiocyanato)bis(2,2'-bi-2-thiazoline)iron(II) , 1994 .

[35]  J. McGarvey,et al.  Raman Spectroscopic Study of Pressure Effects on the Spin-Crossover Coordination Polymers Fe(Pyrazine)[M(CN)4]·2H2O (M = Ni, Pd, Pt). First Observation of a Piezo-Hysteresis Loop at Room Temperature , 2003 .

[36]  D. Denux,et al.  Nanoparticles of [Fe(NH2-trz)3]Br2.3H2O (NH2-trz=2-amino-1,2,4-triazole) prepared by the reverse micelle technique: influence of particle and coherent domain sizes on spin-crossover properties. , 2009, Chemistry.

[37]  A. Stancu,et al.  Model for elastic relaxation phenomena in finite 2D hexagonal molecular lattices. , 2009, Physical review letters.

[38]  S. Miyashita,et al.  Monte Carlo simulation of pressure-induced phase transitions in spin-crossover materials. , 2007, Physical review letters.

[39]  J. Szeftel Surface phonon dispersion, using electron energy loss spectroscopy , 1985 .

[40]  Eugenio Coronado,et al.  Bistable Spin‐Crossover Nanoparticles Showing Magnetic Thermal Hysteresis near Room Temperature , 2007 .