Identification of dopant site and its effect on electrochemical activity in Mn-doped lithium titanate.

Doped metal oxide materials are commonly used for applications in energy storage and conversion, such as batteries and solid oxide fuel cells. The knowledge of the electronic properties of dopants and their local environment is essential for understanding the effects of doping on the electrochemical properties. Using a combination of X-ray absorption near-edge structure spectroscopy (XANES) experiment and theoretical modeling we demonstrate that in the dilute (1 at. %) Mn-doped lithium titanate (Li4/3Ti5/3O4, or LTO) the dopant Mn2+ ions reside on tetrahedral (8a) sites. First-principles Mn K-edge XANES calculations revealed the spectral signature of the tetrahedrally coordinated Mn as a sharp peak in the middle of the absorption edge rise, caused by the 1s → 4p transition, and it is important to include the effective electron-core hole Coulomb interaction in order to calculate the intenisty of this peak accurately. This dopant location explains the impedance of Li migration through the LTO lattice during the charge-discharge process, and, as a result - the observed remarkable 20% decrease in electrochemical rate performance of the 1% Mn-doped LTO compared to the pristine LTO.

[1]  P. Glatzel,et al.  The 1s x-ray absorption pre-edge structures in transition metal oxides , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[2]  Yanli Wang,et al.  Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009 .

[3]  U. Banin,et al.  Reversed Nanoscale Kirkendall Effect in Au–InAs Hybrid Nanoparticles , 2016 .

[4]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[5]  George Srajer,et al.  Multiple Scattering Calculations of Bonding and X-ray Absorption Spectroscopy of Manganese Oxides , 2003 .

[6]  Yong‐Sheng Hu,et al.  Porous Li4Ti5O12 Coated with N‐Doped Carbon from Ionic Liquids for Li‐Ion Batteries , 2011, Advanced materials.

[7]  D. Lu,et al.  Nonresonant valence-to-core x-ray emission spectroscopy of niobium. , 2018, Physical review. B.

[8]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[9]  R. Egerton New techniques in electron energy-loss spectroscopy and energy-filtered imaging. , 2003, Micron.

[10]  Tingfeng Yi,et al.  Recent advances of Li4Ti5O12 as a promising next generation anode material for high power lithium-ion batteries , 2015 .

[11]  T. Eckl,et al.  Lithium diffusion in the spinel phase Li4Ti5O12 and in the rocksalt phase Li7Ti5O12 of lithium titanate from first principles , 2014 .

[12]  M. Armand,et al.  Building better batteries , 2008, Nature.

[13]  S. Harris,et al.  Spectroscopic fingerprints of valence and spin states in manganese oxides and fluorides , 2012, 1208.6319.

[14]  G. Seifert,et al.  EXAFS, XANES, and DFT study of the mixed-valence compound YMn 2 O 5 : Site-selective substitution of Fe for Mn , 2010 .

[15]  H. Haubeck COMP , 2019, Springer Reference Medizin.

[16]  Volker Hennige,et al.  Small Change—Great Effect: Steep Increase of Li Ion Dynamics in Li4Ti5O12 at the Early Stages of Chemical Li Insertion , 2015 .

[17]  Y. Li,et al.  Tunable electronic and magnetic properties of two‐dimensional materials and their one‐dimensional derivatives , 2016, Wiley interdisciplinary reviews. Computational molecular science.

[18]  P. Bogdanoff,et al.  Evaluation of MnOx, Mn2O3, and Mn3O4 Electrodeposited Films for the Oxygen Evolution Reaction of Water , 2014 .

[19]  P. Mustarelli,et al.  Cations Distribution and Valence States in Mn-Substituted Li4Ti5O12 Structure , 2008 .

[20]  Li Lu,et al.  Structure and high rate performance of Ni2+ doped Li4Ti5O12 for lithium ion battery , 2013 .

[21]  신상옥 6 , 1992, You Can Cross the Massacre on Foot.

[22]  K. Reuter,et al.  Implications of Occupational Disorder on Ion Mobility in Li4Ti5O12 Battery Materials. , 2017, Nano letters.

[23]  P. Mustarelli,et al.  Cr and Ni Doping of Li4Ti5O12: Cation Distribution and Functional Properties , 2009 .

[24]  C. Mawson,et al.  41 , 2006, The Complete Works of W. R. Bion.

[25]  C. Hébert Practical aspects of running the WIEN2k code for electron spectroscopy. , 2007, Micron.

[26]  John J. Rehr,et al.  Progress in the theory and interpretation of XANES , 2005 .

[27]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[28]  S. Johnson,et al.  Femtosecond XANES Study of the Light-Induced Spin Crossover Dynamics in an Iron(II) Complex , 2009, Science.

[29]  E. Stern,et al.  Strain-induced bond buckling and its role in insulating properties of Cr-doped V2O3. , 2006, Physical review letters.

[30]  P. Lippens,et al.  Phase transition in the spinel Li4Ti5O12 induced by lithium insertion - Influence of the substitutions Ti/V, Ti/Mn, Ti/Fe , 2003 .

[31]  Yuanping Cheng,et al.  Enhanced high-rate performance of sub-micro Li4Ti4.95Zn0.05O12 as anode material for lithium-ion batteries , 2013, Ionics.

[32]  D. Fermín,et al.  AMnO3 (A = Sr, La, Ca, Y) Perovskite Oxides as Oxygen Reduction Electrocatalysts , 2018, Topics in Catalysis.

[33]  A. Frenkel,et al.  Endogenous Dynamic Nuclear Polarization for Natural Abundance 17O and Lithium NMR in the Bulk of Inorganic Solids. , 2018, Journal of the American Chemical Society.

[34]  Harishchandra Singh,et al.  Observation of high-spin mixed oxidation state of cobalt in ceramic Co3TeO6 , 2014 .

[35]  P. Ngoepe,et al.  Studies of the location of precious metals in nanocrystalline titanium dioxide using XRD and XANES , 2007 .

[36]  M. Newton Time Resolved Operando X-ray Techniques in Catalysis, a Case Study: CO Oxidation by O2 over Pt Surfaces and Alumina Supported Pt Catalysts , 2017 .

[37]  Igor Lubomirsky,et al.  Giant Electrostriction in Gd‐Doped Ceria , 2012, Advances in Materials.

[38]  U. Banin,et al.  Size Dependence of Doping by a Vacancy Formation Reaction in Copper Sulfide Nanocrystals. , 2017, Angewandte Chemie.

[39]  丁東鎭 12 , 1993, Algo habla con mi voz.

[40]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[41]  K. Chapman Emerging operando and x-ray pair distribution function methods for energy materials development , 2016 .

[42]  J. R. Heringa,et al.  The Fine Line between a Two‐Phase and Solid‐Solution Phase Transformation and Highly Mobile Phase Interfaces in Spinel Li4+xTi5O12 , 2017 .

[43]  Zhiming M. Wang,et al.  Organic/Inorganic Metal Halide Perovskite Optoelectronic Devices beyond Solar Cells , 2018, Advanced science.

[44]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[45]  N. Boudet,et al.  Local Structure and Lithium Diffusion Pathways in Li4Mn2O5 High Capacity Cathode Probed by Total Scattering and XANES , 2018 .

[46]  Tae-Gyung Jeong,et al.  An upper limit of Cr-doping level to Retain Zero-strain Characteristics of Li4Ti5O12 Anode Material for Li-ion Batteries , 2017, Scientific Reports.

[47]  Janis Timoshenko,et al.  Solving local structure around dopants in metal nanoparticles with ab initio modeling of X-ray absorption near edge structure. , 2016, Physical chemistry chemical physics : PCCP.

[48]  Rongshun Wang,et al.  High rate capability and long-term cyclability of Li4Ti4.9V0.1O12 as anode material in lithium ion battery , 2011 .

[49]  E. Erdem,et al.  Mn-substituted spinel Li4Ti5O12 materials studied by multifrequency EPR spectroscopy , 2013 .

[50]  Eric L. Shirley,et al.  Efficient implementation of core-excitation Bethe-Salpeter equation calculations , 2015, Comput. Phys. Commun..

[51]  G. Fitzgerald,et al.  'I. , 2019, Australian journal of primary health.

[52]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[53]  A. Marcelli,et al.  Quadrupolar transitions and medium-range-order effects in metal K-edge x-ray absorption spectra of 3d transition-metal compounds , 2004 .

[54]  Huajun Xu,et al.  Li2CuTi3O8–Li4Ti5O12 double spinel anode material with improved rate performance for Li-ion batteries , 2009 .

[55]  Haiying Shen,et al.  TOP , 2019, Encyclopedia of Autism Spectrum Disorders.

[56]  A. Frenkel,et al.  Investigation of periodically driven systems by x-ray absorption spectroscopy using asynchronous data collection mode. , 2018, The Review of scientific instruments.

[57]  Carlo Lamberti,et al.  X-Ray Absorption and X-Ray Emission Spectroscopy: Theory and Applications , 2016 .

[58]  Zi‐Feng Ma,et al.  Challenges of Spinel Li4Ti5O12 for Lithium‐Ion Battery Industrial Applications , 2017 .

[59]  Marçal Capdevila-Cortada,et al.  Performance of DFT+U Approaches in the Study of Catalytic Materials , 2016 .

[60]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[61]  J J Kas,et al.  Bethe-Salpeter equation calculations of core excitation spectra. , 2010, Physical review. B, Condensed matter and materials physics.

[62]  F. Farges Ab initio and experimental pre-edge investigations of the Mn K-edge XANES in oxide-type materials , 2005 .

[63]  H. Bethe,et al.  A Relativistic equation for bound state problems , 1951 .

[64]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[65]  P. Bogdanovich,et al.  Atomic Data and Nuclear Data Tables , 2013 .

[66]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[67]  Esther S. Takeuchi,et al.  Multi-Stage Structural Transformations in Zero-Strain Lithium Titanate Unveiled by in Situ X-ray Absorption Fingerprints. , 2017, Journal of the American Chemical Society.

[68]  Chen Gong,et al.  Yttrium-modified Li4Ti5O12 as an effective anode material for lithium ion batteries with outstanding long-term cyclability and rate capabilities , 2013 .

[69]  Gebräuchliche Fertigarzneimittel,et al.  V , 1893, Therapielexikon Neurologie.

[70]  Stephen R. Okoniewski,et al.  Front Cover: Improved Free‐Energy Landscape Quantification Illustrated with a Computationally Designed Protein–Ligand Interaction (ChemPhysChem 1/2018) , 2018 .

[71]  E. Wachtel,et al.  In-situ extended X-ray absorption fine structure study of electrostriction in Gd doped ceria , 2015 .

[72]  Tsutomu Ohzuku,et al.  Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ] O 4 for Rechargeable Lithium Cells , 1995 .

[73]  A. Jansen,et al.  Studies of Mg-substituted Li{sub 4x4}Mg{sub x}Ti{sub 5}O{sub 12} spinel electrodes (0{le}x{le}1) for lithium batteries. , 2001 .

[74]  U. Banin,et al.  From Impurity Doping to Metallic Growth in Diffusion Doping: Properties and Structure of Silver-Doped InAs Nanocrystals. , 2015, ACS nano.

[75]  J. Campbell,et al.  WIDTHS OF THE ATOMIC K–N7 LEVELS , 2001 .

[76]  Andrew G. Glen,et al.  APPL , 2001 .

[77]  Philipp Müller,et al.  Applications of Modulation Excitation Spectroscopy in Heterogeneous Catalysis , 2017 .