Surfactant-templating strategy for ultrathin mesoporous TiO2 coating on flexible graphitized carbon supports for high-performance lithium-ion battery

Abstract The electrochemical performance of nanocomposites could greatly be improved by rationally designing flexible core-shell heterostructures. Typically, the uniform coating of a thin mesoporous crystalline transition metal oxide shell on flexible graphitized carbon supports can provide both fast ion and electron transport pathways, which is an ideal material for high-performance lithium-ion batteries. Herein, we report a surfactant-templating assembly coating method to deposit an ultrathin mesoporous crystalline TiO2 shell on flexible graphitized carbon supports by using amphiphilic triblock copolymer Pluronic F127 as a template. Taking multi-wall carbon nanotubes (CNTs) as an example support, the obtained flexible CNTs@mTiO2 hybrid mesoporous nanocables exhibit an ultra-high surface area (∼137 m2/g), large internal pore volume (∼0.26 cm3/g), uniform accessible mesopores (∼6.2 nm) and ultrathin highly-crystalline mesoporous anatase shells (∼20 nm in thickness). As an anode material for lithium battery, the flexible CNTs@mTiO2 hybrid mesoporous nanocables show high-rate capacity (∼210 mA h g−1 at 20 C, 1 C=170 mA g−1), high Coulombic efficiency (nearly 100% during 1000 cycles at 20 C) and ultralong-cycling life (keeping ∼210 mAh g−1 after 1000 cycles at 20 C). The strong synergistic coupling effect between CNT cores and thin mesoporous TiO2 shells, high surface area, accessible large pores and highly crystalline thin mesoporous shells result in excellent performance in lithium batteries. This versatile surfactant-templating assembly coating method can be easily extended to deposit an ultrathin mesoporous TiO2 layer on flat graphene (GR) to form a uniform sandwich-like flexible GR@mTiO2 nanoflakes, which opens up a new opportunity for depositing thin mesoporous transition-metal oxides on graphitized carbon supports for advanced applications in energy conversion and storage, photocatalysis, sensors and drug delivery, etc.

[1]  Zongping Shao,et al.  Self-assembled mesoporous TiO2/carbon nanotube composite with a three-dimensional conducting nanonetwork as a high-rate anode material for lithium-ion battery , 2014 .

[2]  Gengfeng Zheng,et al.  Mesoporous TiO2 Mesocrystals: Remarkable Defects-Induced Crystallite-Interface Reactivity and Their in Situ Conversion to Single Crystals , 2015, ACS central science.

[3]  H. Zeng,et al.  Preparation of nanocomposites of metals, metal oxides, and carbon nanotubes via self-assembly. , 2007, Journal of the American Chemical Society.

[4]  Wei Li,et al.  Sol-gel design strategy for ultradispersed TiO2 nanoparticles on graphene for high-performance lithium ion batteries. , 2013, Journal of the American Chemical Society.

[5]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[6]  Feng Li,et al.  Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates , 2012, Proceedings of the National Academy of Sciences.

[7]  X. Lou,et al.  Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. , 2011, Nanoscale.

[8]  J. Chen,et al.  One‐Dimensional Hierarchical Structures Composed of Novel Metal Oxide Nanosheets on a Carbon Nanotube Backbone and Their Lithium‐Storage Properties , 2011 .

[9]  X. Lou,et al.  Carbon-supported ultra-thin anatase TiO2 nanosheets for fast reversible lithium storage , 2011 .

[10]  D. Zhao,et al.  Templated Fabrication of Core–Shell Magnetic Mesoporous Carbon Microspheres in 3-Dimensional Ordered Macroporous Silicas , 2014 .

[11]  D. Zhao,et al.  Graphitic Carbon Conformal Coating of Mesoporous TiO2 Hollow Spheres for High-Performance Lithium Ion Battery Anodes. , 2015, Journal of the American Chemical Society.

[12]  Xiaodong Chen,et al.  Rational material design for ultrafast rechargeable lithium-ion batteries. , 2015, Chemical Society reviews.

[13]  Haihui Wang,et al.  Flexible SnO2/N-Doped Carbon Nanofiber Films as Integrated Electrodes for Lithium-Ion Batteries with Superior Rate Capacity and Long Cycle Life. , 2016, Small.

[14]  Guoxiu Wang,et al.  Ordered mesoporous core/shell SnO2/C nanocomposite as high-capacity anode material for lithium-ion batteries. , 2013, Chemistry.

[15]  Li-Jun Wan,et al.  Symbiotic Coaxial Nanocables: Facile Synthesis and an Efficient and Elegant Morphological Solution to the Lithium Storage Problem , 2010 .

[16]  G. Graff,et al.  Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage. , 2010, ACS nano.

[17]  D. Zhao,et al.  General strategy to synthesize uniform mesoporous TiO2/graphene/mesoporous TiO2 sandwich-like nanosheets for highly reversible lithium storage. , 2015, Nano letters.

[18]  C. M. Li,et al.  Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. , 2010, Journal of the American Chemical Society.

[19]  Y. Liu,et al.  TiO2 Nanoflakes Modified with Gold Nanoparticles as Photocatalysts with High Activity and Durability under near UV Irradiation , 2010 .

[20]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[21]  Henry J. Snaith,et al.  Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance , 2013, Nature.

[22]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[23]  B. Liu,et al.  Carbon Nanotubes Supported Mesoporous Mesocrystals of Anatase TiO2 , 2008 .

[24]  Jian Jiang,et al.  Recent Advances in Metal Oxide‐based Electrode Architecture Design for Electrochemical Energy Storage , 2012, Advanced materials.

[25]  Jun Song Chen,et al.  SnO2 Nanoparticles with Controlled Carbon Nanocoating as High-Capacity Anode Materials for Lithium-Ion Batteries , 2009 .

[26]  Paul V. Braun,et al.  Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. , 2011, Nature nanotechnology.

[27]  X. Lou,et al.  A Hierarchically Nanostructured Composite of MnO2/Conjugated Polymer/Graphene for High‐Performance Lithium Ion Batteries , 2011 .

[28]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[29]  Feng Li,et al.  High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. , 2010, ACS nano.

[30]  R. Ma,et al.  Synthesis of carbon nanotube/mesoporous TiO2 coaxial nanocables with enhanced lithium ion battery performance , 2014 .

[31]  H. Xin,et al.  Mesoporous CNT@TiO2-C Nanocable with Extremely Durable High Rate Capability for Lithium-Ion Battery Anodes , 2014, Scientific Reports.

[32]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[33]  Abdullah M. Al-Enizi,et al.  Radially oriented mesoporous TiO2 microspheres with single-crystal–like anatase walls for high-efficiency optoelectronic devices , 2015, Science Advances.

[34]  Bing Sun,et al.  Highly Ordered Mesoporous MoS2 with Expanded Spacing of the (002) Crystal Plane for Ultrafast Lithium Ion Storage , 2012 .

[35]  Guoxiu Wang,et al.  An ordered mesoporous WS2 anode material with superior electrochemical performance for lithium ion batteries , 2012 .

[36]  X. Lai,et al.  Carbon-doped TiO2 coating on multiwalled carbon nanotubes with higher visible light photocatalytic activity , 2011 .

[37]  Ji‐Guang Zhang,et al.  Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. , 2009, ACS nano.

[38]  X. Lou,et al.  Double‐Shelled CoMn2O4 Hollow Microcubes as High‐Capacity Anodes for Lithium‐Ion Batteries , 2012, Advanced materials.

[39]  Chao-Ming Huang,et al.  Enhanced visible light-induced photoelectrocatalytic degradation of phenol by carbon nanotube-doped TiO2 electrodes , 2009 .

[40]  S. Greenbaum,et al.  Multifunctional MnO2−Carbon Nanoarchitectures Exhibit Battery and Capacitor Characteristics in Alkaline Electrolytes , 2009 .

[41]  Fei Wei,et al.  High‐Performance Energy‐Storage Architectures from Carbon Nanotubes and Nanocrystal Building Blocks , 2012, Advanced materials.

[42]  Xiaodong Chen,et al.  Mechanical Force‐Driven Growth of Elongated Bending TiO2‐based Nanotubular Materials for Ultrafast Rechargeable Lithium Ion Batteries , 2014, Advanced materials.

[43]  Jun Liu,et al.  Functionalized Graphene Sheets as Molecular Templates for Controlled Nucleation and Self‐Assembly of Metal Oxide‐Graphene Nanocomposites , 2012, Advanced materials.

[44]  H. Yadegari,et al.  Three-dimensional MnO2 ultrathin nanosheet aerogels for high-performance Li–O2 batteries , 2015 .

[45]  Andrew G. Glen,et al.  APPL , 2001 .

[46]  Byoungwoo Kang,et al.  Battery materials for ultrafast charging and discharging , 2009, Nature.

[47]  M. Jaroniec,et al.  Graphene-based semiconductor photocatalysts. , 2012, Chemical Society Reviews.

[48]  Jin Zou,et al.  Anatase TiO2 single crystals with a large percentage of reactive facets , 2008, Nature.

[49]  Y. Liu,et al.  Ordered Macro/Mesoporous TiO2 Hollow Microspheres with Highly Crystalline Thin Shells for High-Efficiency Photoconversion. , 2016, Small.

[50]  D. Zhao,et al.  Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. , 2008, Journal of the American Chemical Society.

[51]  D. Dubal,et al.  Hybrid energy storage: the merging of battery and supercapacitor chemistries. , 2015, Chemical Society reviews.

[52]  J. Bhattacharya,et al.  Understanding Li diffusion in Li-intercalation compounds. , 2013, Accounts of Chemical Research.

[53]  Sean C. Smith,et al.  Solvothermal synthesis and photoreactivity of anatase TiO(2) nanosheets with dominant {001} facets. , 2009, Journal of the American Chemical Society.

[54]  X. Lou,et al.  One-pot synthesis of uniform Fe₃O₄ nanospheres with carbon matrix support for improved lithium storage capabilities. , 2011, ACS Applied Materials and Interfaces.

[55]  Jing Wei,et al.  Multifunctional mesoporous composite microspheres with well-designed nanostructure: a highly integrated catalyst system. , 2010, Journal of the American Chemical Society.