New Physics hints from τ scalar interactions and (g−2)e,μ
暂无分享,去创建一个
[1] H. Haber,et al. Accommodating Hints of New Heavy Scalars in the Framework of the Flavor-Aligned Two-Higgs-Doublet Model , 2023, 2302.13697.
[2] C. Chiang,et al. Top-quark FCNC decays, LFVs, lepton $g-2$, and $W$ mass anomaly with inert charged Higgses , 2023, 2301.07070.
[3] A. Thapa,et al. $W$ boson mass shift, dark matter and $(g-2)_\ell$ in a scotogenic-Zee model , 2022, 2205.02217.
[4] F. Botella,et al. Muon and electron g-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g-2$$\end{document} anomalies in a flavor conserv , 2022, The European Physical Journal C.
[5] M. Pierini,et al. Impact of the Recent Measurements of the Top-Quark and W-Boson Masses on Electroweak Precision Fits. , 2022, Physical review letters.
[6] Yongcheng Wu,et al. Electroweak precision fit and new physics in light of the W boson mass , 2022, Physical Review D.
[7] Joshua R. Smith,et al. High-precision measurement of the W boson mass with the CDF II detector. , 2022, Science.
[8] D. Borah,et al. Lepton anomalous magnetic moment with singlet-doublet fermion dark matter in a scotogenic U(1)Lμ−Lτ model , 2022, Physical Review D.
[9] M. Hoferichter,et al. Toward testing the magnetic moment of the tau at one part per million , 2021, Physical Review D.
[10] C. Schwanenberger,et al. Possible indications for new Higgs bosons in the reach of the LHC: N2HDM and NMSSM interpretations , 2021, The European Physical Journal C.
[11] P. Wang,et al. Solution of lepton $g-2$ anomalies with nonlocal QED , 2021, 2112.02971.
[12] E. Arganda,et al. Interpretation of LHC excesses in ditop and ditau channels as a 400-GeV pseudoscalar resonance , 2021, Journal of High Energy Physics.
[13] S. C. Kim,et al. Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm. , 2021, Physical review letters.
[14] Tianjun Li,et al. Lepton-specific inert two-Higgs-doublet model confronted with the new results for muon and electron g−2 anomalies and multilepton searches at the LHC , 2021, Physical Review D.
[15] F. Bedeschi,et al. Measurement of the anomalous precession frequency of the muon in the Fermilab Muon g−2 Experiment , 2021, Physical Review D.
[16] S. Fajfer,et al. Interplay of New Physics effects in (g − 2)ℓ and h → ℓ+ℓ− — lessons from SMEFT , 2021, Journal of High Energy Physics.
[17] R. Coy,et al. Solving the electron and muon g-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g-2$$\end{document} anomalies in Z′\d , 2021, The European Physical Journal C.
[18] Xin-qiang Li,et al. Power-aligned 2HDM: a correlative perspective on (g − 2)e,μ , 2020, Journal of High Energy Physics.
[19] B. Taylor,et al. CODATA recommended values of the fundamental physical constants: 2006 | NIST , 2007, 0801.0028.
[20] S. Khalil,et al. Explaining electron and muon $g-2$ anomalies in an Aligned 2-Higgs Doublet Model with Right-Handed Neutrinos , 2020, 2012.06911.
[21] Zhibin Yao,et al. Determination of the fine-structure constant with an accuracy of 81 parts per trillion , 2020, Nature.
[22] Sumit Ghosh,et al. Explaining (g−2)μ,e , the KOTO anomaly, and the MiniBooNE excess in an extended Higgs model with sterile neutrinos , 2020 .
[23] S. Jana,et al. Dark matter assisted lepton anomalous magnetic moments and neutrino masses , 2020, Physical Review D.
[24] M. Hirsch,et al. ( g−2 ) anomalies and neutrino mass , 2020, Physical Review D.
[25] C. DeTar,et al. The anomalous magnetic moment of the muon in the Standard Model , 2020, Physics Reports.
[26] F. Botella,et al. Electron and muon g−2 anomalies in general flavor conserving two-Higgs-doublet models , 2020, 2006.01934.
[27] M. Neubert,et al. Axionlike Particles, Lepton-Flavor Violation, and a New Explanation of a_{μ} and a_{e}. , 2020, Physical review letters.
[28] F. Richard. Evidences for a pseudo scalar resonance at 400 GeV Possible interpretations , 2020, 2003.07112.
[29] A. Melis,et al. Muon and electron g − 2 and lepton masses in flavor models , 2020, Journal of High Energy Physics.
[30] S. Jana,et al. Resolving electron and muon g−2 within the 2HDM , 2020, Physical Review D.
[31] R. Volkas,et al. Getting chirality right: Single scalar leptoquark solutions to the (g−2)e,μ puzzle , 2020, Physical Review D.
[32] Hoang Dai Nghia Nguyen,et al. Search for Heavy Higgs Bosons Decaying into Two Tau Leptons with the ATLAS Detector Using pp Collisions at sqrt[s]=13 TeV. , 2020, Physical review letters.
[33] N. Haba,et al. Muon and electron g − 2 and the origin of the fermion mass hierarchy , 2020, 2002.10230.
[34] T. Kitahara,et al. Probing eμ flavor-violating ALP at Belle II , 2020, Journal of High Energy Physics.
[35] M. Schott,et al. Anomalous electromagnetic moments of τ lepton in γγ → τ+τ− reaction in Pb+Pb collisions at the LHC , 2020, 2002.05503.
[36] M. Hayakawa,et al. Hadronic Light-by-Light Scattering Contribution to the Muon Anomalous Magnetic Moment from Lattice QCD. , 2019, Physical review letters.
[37] T. Teubner,et al. g−2 of charged leptons, α(MZ2) , and the hyperfine splitting of muonium , 2019, Physical Review D.
[38] G. Colangelo,et al. Longitudinal short-distance constraints for the hadronic light-by-light contribution to (g − 2)μ with large-Nc Regge models , 2019, Journal of High Energy Physics.
[39] L. Beresford,et al. New physics and tau g−2 using LHC heavy ion collisions , 2019, Physical Review D.
[40] S. M. Etesami,et al. Search for heavy Higgs bosons decaying to a top quark pair in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV , 2019, Journal of High Energy Physics.
[41] D. Litim,et al. Anomalous magnetic moments from asymptotic safety , 2019, Physical Review D.
[42] S. Volkov. Calculating the five-loop QED contribution to the electron anomalous magnetic moment: Graphs without lepton loops , 2019, Physical Review D.
[43] J. Bijnens,et al. Short-distance constraints for the HLbL contribution to the muon anomalous magnetic moment , 2019, Physics Letters B.
[44] M. Hoferichter,et al. Three-pion contribution to hadronic vacuum polarization , 2019, Journal of High Energy Physics.
[45] W. Yin,et al. Explaining electron and muon g − 2 anomaly in SUSY without lepton-flavor mixings , 2019, Journal of High Energy Physics.
[46] A. Nyffeler,et al. Lattice calculation of the pion transition form factor with Nf=2+1 Wilson quarks , 2019, Physical Review D.
[47] C. Wagner,et al. A light complex scalar for the electron and muon anomalous magnetic moments , 2018, Journal of High Energy Physics.
[48] G. Colangelo,et al. Two-pion contribution to hadronic vacuum polarization , 2018, Journal of High Energy Physics.
[49] M. Davier,et al. A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to α( m 2 Z ) , 2019 .
[50] C. Panda,et al. Improved limit on the electric dipole moment of the electron , 2018, Nature.
[51] M. Hoferichter,et al. Dispersion relation for hadronic light-by-light scattering: pion pole , 2018, Journal of High Energy Physics.
[52] M. Hoferichter,et al. Combined Explanations of $(g-2)_\mu$, $(g-2)_e$ and Implications for a Large Muon EDM∗ , 2019, Proceedings of ALPS 2019 An Alpine LHC Physics Summit — PoS(ALPS2019).
[53] Chenghui Yu,et al. Measurement of the fine-structure constant as a test of the Standard Model , 2018, Science.
[54] F. Botella,et al. Flavor conservation in two-Higgs-doublet models , 2018, Physical Review D.
[55] S. Laporta. High-precision calculation of the 4-loop contribution to the electron g-2 in QED1 , 2017, Journal of Physics: Conference Series.
[56] M. Davier,et al. Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon g − 2 and α ( m 2 Z ) using newest hadronic cross-section data , 2018 .
[57] T. Teubner,et al. Muon g − 2 and α ð M 2 Z Þ : A new data-based analysis , 2018 .
[58] T. Kinoshita,et al. Revised and improved value of the QED tenth-order electron anomalous magnetic moment , 2017, 1712.06060.
[59] A. Pich,et al. Flavour alignment in multi-Higgs-doublet models , 2017, Journal of High Energy Physics.
[60] P. Masjuan,et al. Pseudoscalar-pole contribution to the $(g_{\mu}-2)$: a rational approach , 2017, 1701.05829.
[61] S. Y. Shim,et al. Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector , 2016 .
[62] G. Colangelo,et al. Dispersion relation for hadronic light-by-light scattering: two-pion contributions , 2017, Journal of High Energy Physics.
[63] M. Hayakawa,et al. Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD. , 2014, Physical review letters.
[64] A. Nyffeler,et al. Remarks on higher-order hadronic corrections to the muon g-2 , 2014, 1403.7512.
[65] M. Steinhauser,et al. Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order , 2014, 1403.6400.
[66] D. Stöckinger,et al. The electroweak contributions to $(g-2)_\mu$ after the Higgs boson mass measurement , 2013, 1306.5546.
[67] M. Hayakawa,et al. Complete tenth-order QED contribution to the muon g-2. , 2012, Physical review letters.
[68] M. Hayakawa,et al. Tenth-order QED contribution to the electron g-2 and an improved value of the fine structure constant. , 2012, Physical review letters.
[69] E. Koschmieder. Theory of the Anomalous Magnetic Moment of the Electron , 2010, 1001.3371.
[70] J. Vidal,et al. Tau anomalous magnetic moment form factor at super B/flavor factories , 2007, 0707.2496.
[71] G. Gabrielse,et al. New measurement of the electron magnetic moment and the fine structure constant. , 2006, Physical review letters.
[72] A. Vainshtein,et al. Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment reexamined , 2003, hep-ph/0312226.
[73] W. Marciano,et al. Refinements in electroweak contributions to the muon anomalous magnetic moment , 2002, hep-ph/0212229.
[74] Peter J. Mohr,et al. CODATA Recommended Values of the Fundamental Physical Constants (version 4.0) , 2003 .
[75] Hayes,et al. Review of Particle Physics. , 1996, Physical review. D, Particles and fields.
[76] Silva,et al. Jarlskog-like invariants for theories with scalars and fermions. , 1994, Physical review. D, Particles and fields.
[77] Howard Georgi,et al. Suppression of Flavor Changing Effects From Neutral Spinless Meson Exchange in Gauge Theories , 1979 .
[78] John F. Donoghue,et al. Properties of charged Higgs bosons , 1979 .