New Physics hints from τ scalar interactions and (g−2)e,μ

We consider a flavour conserving two Higgs doublet model that consists of a type I (or X) quark sector and a generalized lepton sector where the new Yukawa couplings are completely decoupled from lepton mass proportionality. The model, previously proposed to solve both muon and electron $g-2$ anomalies simultaneously, is also capable to accommodate the ATLAS excess in $pp \rightarrow S \rightarrow \tau^{+}\tau^{-}$ with gluon-gluon fusion production in the invariant mass range [0.2; 0.6] TeV, including all relevant low and high energy constraints. The excess is reproduced taking into account the new contributions from the scalar H, the pseudoscalar A, or both. In particular, detailed numerical analyses favoured the solution with a significant hierarchy among the vevs of the two Higgs doublets, $t_{\beta} \sim 10$, and light neutral scalars satisfying $m_\mathrm{A}>m_\mathrm{H}$ with sizable couplings to $\tau$ leptons. In this region of the parameter space, the muon $g-2$ anomaly receives one and two loop (Barr-Zee) contributions of similar size, while the electron anomaly is explained at two loops. An analogous ATLAS excess in $b$-associated production and the CMS excess in ditop production are also studied. Further New Physics prospects concerning the anomalous magnetic moment of the $\tau$ lepton and the implications of the CDF $M_W$ measurement on the final results are discussed.

[1]  H. Haber,et al.  Accommodating Hints of New Heavy Scalars in the Framework of the Flavor-Aligned Two-Higgs-Doublet Model , 2023, 2302.13697.

[2]  C. Chiang,et al.  Top-quark FCNC decays, LFVs, lepton $g-2$, and $W$ mass anomaly with inert charged Higgses , 2023, 2301.07070.

[3]  A. Thapa,et al.  $W$ boson mass shift, dark matter and $(g-2)_\ell$ in a scotogenic-Zee model , 2022, 2205.02217.

[4]  F. Botella,et al.  Muon and electron g-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g-2$$\end{document} anomalies in a flavor conserv , 2022, The European Physical Journal C.

[5]  M. Pierini,et al.  Impact of the Recent Measurements of the Top-Quark and W-Boson Masses on Electroweak Precision Fits. , 2022, Physical review letters.

[6]  Yongcheng Wu,et al.  Electroweak precision fit and new physics in light of the W boson mass , 2022, Physical Review D.

[7]  Joshua R. Smith,et al.  High-precision measurement of the W boson mass with the CDF II detector. , 2022, Science.

[8]  D. Borah,et al.  Lepton anomalous magnetic moment with singlet-doublet fermion dark matter in a scotogenic U(1)Lμ−Lτ model , 2022, Physical Review D.

[9]  M. Hoferichter,et al.  Toward testing the magnetic moment of the tau at one part per million , 2021, Physical Review D.

[10]  C. Schwanenberger,et al.  Possible indications for new Higgs bosons in the reach of the LHC: N2HDM and NMSSM interpretations , 2021, The European Physical Journal C.

[11]  P. Wang,et al.  Solution of lepton $g-2$ anomalies with nonlocal QED , 2021, 2112.02971.

[12]  E. Arganda,et al.  Interpretation of LHC excesses in ditop and ditau channels as a 400-GeV pseudoscalar resonance , 2021, Journal of High Energy Physics.

[13]  S. C. Kim,et al.  Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm. , 2021, Physical review letters.

[14]  Tianjun Li,et al.  Lepton-specific inert two-Higgs-doublet model confronted with the new results for muon and electron g−2 anomalies and multilepton searches at the LHC , 2021, Physical Review D.

[15]  F. Bedeschi,et al.  Measurement of the anomalous precession frequency of the muon in the Fermilab Muon g−2 Experiment , 2021, Physical Review D.

[16]  S. Fajfer,et al.  Interplay of New Physics effects in (g − 2)ℓ and h → ℓ+ℓ− — lessons from SMEFT , 2021, Journal of High Energy Physics.

[17]  R. Coy,et al.  Solving the electron and muon g-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g-2$$\end{document} anomalies in Z′\d , 2021, The European Physical Journal C.

[18]  Xin-qiang Li,et al.  Power-aligned 2HDM: a correlative perspective on (g − 2)e,μ , 2020, Journal of High Energy Physics.

[19]  B. Taylor,et al.  CODATA recommended values of the fundamental physical constants: 2006 | NIST , 2007, 0801.0028.

[20]  S. Khalil,et al.  Explaining electron and muon $g-2$ anomalies in an Aligned 2-Higgs Doublet Model with Right-Handed Neutrinos , 2020, 2012.06911.

[21]  Zhibin Yao,et al.  Determination of the fine-structure constant with an accuracy of 81 parts per trillion , 2020, Nature.

[22]  Sumit Ghosh,et al.  Explaining (g−2)μ,e , the KOTO anomaly, and the MiniBooNE excess in an extended Higgs model with sterile neutrinos , 2020 .

[23]  S. Jana,et al.  Dark matter assisted lepton anomalous magnetic moments and neutrino masses , 2020, Physical Review D.

[24]  M. Hirsch,et al.  ( g−2 ) anomalies and neutrino mass , 2020, Physical Review D.

[25]  C. DeTar,et al.  The anomalous magnetic moment of the muon in the Standard Model , 2020, Physics Reports.

[26]  F. Botella,et al.  Electron and muon g−2 anomalies in general flavor conserving two-Higgs-doublet models , 2020, 2006.01934.

[27]  M. Neubert,et al.  Axionlike Particles, Lepton-Flavor Violation, and a New Explanation of a_{μ} and a_{e}. , 2020, Physical review letters.

[28]  F. Richard Evidences for a pseudo scalar resonance at 400 GeV Possible interpretations , 2020, 2003.07112.

[29]  A. Melis,et al.  Muon and electron g − 2 and lepton masses in flavor models , 2020, Journal of High Energy Physics.

[30]  S. Jana,et al.  Resolving electron and muon g−2 within the 2HDM , 2020, Physical Review D.

[31]  R. Volkas,et al.  Getting chirality right: Single scalar leptoquark solutions to the (g−2)e,μ puzzle , 2020, Physical Review D.

[32]  Hoang Dai Nghia Nguyen,et al.  Search for Heavy Higgs Bosons Decaying into Two Tau Leptons with the ATLAS Detector Using pp Collisions at sqrt[s]=13  TeV. , 2020, Physical review letters.

[33]  N. Haba,et al.  Muon and electron g − 2 and the origin of the fermion mass hierarchy , 2020, 2002.10230.

[34]  T. Kitahara,et al.  Probing eμ flavor-violating ALP at Belle II , 2020, Journal of High Energy Physics.

[35]  M. Schott,et al.  Anomalous electromagnetic moments of τ lepton in γγ → τ+τ− reaction in Pb+Pb collisions at the LHC , 2020, 2002.05503.

[36]  M. Hayakawa,et al.  Hadronic Light-by-Light Scattering Contribution to the Muon Anomalous Magnetic Moment from Lattice QCD. , 2019, Physical review letters.

[37]  T. Teubner,et al.  g−2 of charged leptons, α(MZ2) , and the hyperfine splitting of muonium , 2019, Physical Review D.

[38]  G. Colangelo,et al.  Longitudinal short-distance constraints for the hadronic light-by-light contribution to (g − 2)μ with large-Nc Regge models , 2019, Journal of High Energy Physics.

[39]  L. Beresford,et al.  New physics and tau g−2 using LHC heavy ion collisions , 2019, Physical Review D.

[40]  S. M. Etesami,et al.  Search for heavy Higgs bosons decaying to a top quark pair in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV , 2019, Journal of High Energy Physics.

[41]  D. Litim,et al.  Anomalous magnetic moments from asymptotic safety , 2019, Physical Review D.

[42]  S. Volkov Calculating the five-loop QED contribution to the electron anomalous magnetic moment: Graphs without lepton loops , 2019, Physical Review D.

[43]  J. Bijnens,et al.  Short-distance constraints for the HLbL contribution to the muon anomalous magnetic moment , 2019, Physics Letters B.

[44]  M. Hoferichter,et al.  Three-pion contribution to hadronic vacuum polarization , 2019, Journal of High Energy Physics.

[45]  W. Yin,et al.  Explaining electron and muon g − 2 anomaly in SUSY without lepton-flavor mixings , 2019, Journal of High Energy Physics.

[46]  A. Nyffeler,et al.  Lattice calculation of the pion transition form factor with Nf=2+1 Wilson quarks , 2019, Physical Review D.

[47]  C. Wagner,et al.  A light complex scalar for the electron and muon anomalous magnetic moments , 2018, Journal of High Energy Physics.

[48]  G. Colangelo,et al.  Two-pion contribution to hadronic vacuum polarization , 2018, Journal of High Energy Physics.

[49]  M. Davier,et al.  A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to α( m 2 Z ) , 2019 .

[50]  C. Panda,et al.  Improved limit on the electric dipole moment of the electron , 2018, Nature.

[51]  M. Hoferichter,et al.  Dispersion relation for hadronic light-by-light scattering: pion pole , 2018, Journal of High Energy Physics.

[52]  M. Hoferichter,et al.  Combined Explanations of $(g-2)_\mu$, $(g-2)_e$ and Implications for a Large Muon EDM∗ , 2019, Proceedings of ALPS 2019 An Alpine LHC Physics Summit — PoS(ALPS2019).

[53]  Chenghui Yu,et al.  Measurement of the fine-structure constant as a test of the Standard Model , 2018, Science.

[54]  F. Botella,et al.  Flavor conservation in two-Higgs-doublet models , 2018, Physical Review D.

[55]  S. Laporta High-precision calculation of the 4-loop contribution to the electron g-2 in QED1 , 2017, Journal of Physics: Conference Series.

[56]  M. Davier,et al.  Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon g − 2 and α ( m 2 Z ) using newest hadronic cross-section data , 2018 .

[57]  T. Teubner,et al.  Muon g − 2 and α ð M 2 Z Þ : A new data-based analysis , 2018 .

[58]  T. Kinoshita,et al.  Revised and improved value of the QED tenth-order electron anomalous magnetic moment , 2017, 1712.06060.

[59]  A. Pich,et al.  Flavour alignment in multi-Higgs-doublet models , 2017, Journal of High Energy Physics.

[60]  P. Masjuan,et al.  Pseudoscalar-pole contribution to the $(g_{\mu}-2)$: a rational approach , 2017, 1701.05829.

[61]  S. Y. Shim,et al.  Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector , 2016 .

[62]  G. Colangelo,et al.  Dispersion relation for hadronic light-by-light scattering: two-pion contributions , 2017, Journal of High Energy Physics.

[63]  M. Hayakawa,et al.  Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD. , 2014, Physical review letters.

[64]  A. Nyffeler,et al.  Remarks on higher-order hadronic corrections to the muon g-2 , 2014, 1403.7512.

[65]  M. Steinhauser,et al.  Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order , 2014, 1403.6400.

[66]  D. Stöckinger,et al.  The electroweak contributions to $(g-2)_\mu$ after the Higgs boson mass measurement , 2013, 1306.5546.

[67]  M. Hayakawa,et al.  Complete tenth-order QED contribution to the muon g-2. , 2012, Physical review letters.

[68]  M. Hayakawa,et al.  Tenth-order QED contribution to the electron g-2 and an improved value of the fine structure constant. , 2012, Physical review letters.

[69]  E. Koschmieder Theory of the Anomalous Magnetic Moment of the Electron , 2010, 1001.3371.

[70]  J. Vidal,et al.  Tau anomalous magnetic moment form factor at super B/flavor factories , 2007, 0707.2496.

[71]  G. Gabrielse,et al.  New measurement of the electron magnetic moment and the fine structure constant. , 2006, Physical review letters.

[72]  A. Vainshtein,et al.  Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment reexamined , 2003, hep-ph/0312226.

[73]  W. Marciano,et al.  Refinements in electroweak contributions to the muon anomalous magnetic moment , 2002, hep-ph/0212229.

[74]  Peter J. Mohr,et al.  CODATA Recommended Values of the Fundamental Physical Constants (version 4.0) , 2003 .

[75]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[76]  Silva,et al.  Jarlskog-like invariants for theories with scalars and fermions. , 1994, Physical review. D, Particles and fields.

[77]  Howard Georgi,et al.  Suppression of Flavor Changing Effects From Neutral Spinless Meson Exchange in Gauge Theories , 1979 .

[78]  John F. Donoghue,et al.  Properties of charged Higgs bosons , 1979 .