Nonlinear Process Modelling and Control Using Neurofuzzy Networks

[1]  William Johns,et al.  Computer‐Aided Chemical Engineering , 2011 .

[2]  Jie Zhang,et al.  Modeling and Optimal Control of Batch Processes Using Recurrent Neuro-Fuzzy Networks , 2005, IEEE Trans. Fuzzy Syst..

[3]  Philipp Slusallek,et al.  Introduction to real-time ray tracing , 2005, SIGGRAPH Courses.

[4]  Jie Zhang,et al.  A Reliable Neural Network Model Based Optimal Control Strategy for a Batch Polymerization Reactor , 2004 .

[5]  Yuan Tian,et al.  Optimal control of a batch emulsion copolymerisation reactor based on recurrent neural network models , 2002 .

[6]  Armando Blanco,et al.  Fuzzy automaton induction using neural network , 2001, Int. J. Approx. Reason..

[7]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[8]  Jie Zhang,et al.  Recurrent neuro-fuzzy networks for nonlinear process modeling , 1999, IEEE Trans. Neural Networks.

[9]  Man-Wai Mak,et al.  On the improvement of the real time recurrent learning algorithm for recurrent neural networks , 1999, Neurocomputing.

[10]  Jie Zhang,et al.  Long-term prediction models based on mixed order locally recurrent neural networks , 1998 .

[11]  Karvel K. Thornber,et al.  Fuzzy finite-state automata can be deterministically encoded into recurrent neural networks , 1998, IEEE Trans. Fuzzy Syst..

[12]  Bryon R. Maner,et al.  Polymerization reactor control using autoregressive‐plus Volterra‐based MPC , 1997 .

[13]  Martin Brown,et al.  Advances in neurofuzzy algorithms for real-time modelling and control , 1996 .

[14]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[15]  A. Morris,et al.  Fuzzy neural networks for nonlinear systems modelling , 1995 .

[16]  A. B. Bulsari,et al.  Neural Networks for Chemical Engineers , 1995 .

[17]  Chuen-Tsai Sun,et al.  Neuro-fuzzy modeling and control , 1995, Proc. IEEE.

[18]  Jie Zhang,et al.  On-line process fault diagnosis using fuzzy neural networks , 1994 .

[19]  Ah Chung Tsoi,et al.  Locally recurrent globally feedforward networks: a critical review of architectures , 1994, IEEE Trans. Neural Networks.

[20]  Li-Xin Wang,et al.  Adaptive fuzzy systems and control - design and stability analysis , 1994 .

[21]  Benjamin Kuipers,et al.  The composition and validation of heterogeneous control laws , 1994, Autom..

[22]  Derek A. Linkens,et al.  Learning control using fuzzified self-organizing radial basis function network , 1993, IEEE Trans. Fuzzy Syst..

[23]  T. Johansen,et al.  Constructing NARMAX models using ARMAX models , 1993 .

[24]  B. W. Bequette,et al.  Computational issues in nonlinear predictive control , 1993 .

[25]  Yaman Arkun,et al.  Control of nonlinear systems using polynomial ARMA models , 1993 .

[26]  Yoshiki Uchikawa,et al.  On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm , 1992, IEEE Trans. Neural Networks.

[27]  Jyh-Shing Roger Jang,et al.  Self-learning fuzzy controllers based on temporal backpropagation , 1992, IEEE Trans. Neural Networks.

[28]  P. Werbos,et al.  Long-term predictions of chemical processes using recurrent neural networks: a parallel training approach , 1992 .

[29]  Giovanni Soda,et al.  Local Feedback Multilayered Networks , 1992, Neural Computation.

[30]  Thomas J. McAvoy,et al.  Neural net based model predictive control , 1991 .

[31]  Jooyoung Park,et al.  Universal Approximation Using Radial-Basis-Function Networks , 1991, Neural Computation.

[32]  Paul J. Werbos,et al.  Backpropagation Through Time: What It Does and How to Do It , 1990, Proc. IEEE.

[33]  T. Poggio,et al.  Networks and the best approximation property , 1990, Biological Cybernetics.

[34]  J. Rawlings,et al.  Feedback control of chemical processes using on-line optimization techniques , 1990 .

[35]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[36]  Mark A. Kramer,et al.  Improvement of the backpropagation algorithm for training neural networks , 1990 .

[37]  Thomas J. Mc Avoy,et al.  Use of Neural Nets For Dynamic Modeling and Control of Chemical Process Systems , 1989, 1989 American Control Conference.

[38]  S. Billings,et al.  A prediction-error and stepwise-regression estimation algorithm for non-linear systems , 1986 .

[39]  S. Billings,et al.  Correlation based model validity tests for non-linear models , 1986 .

[40]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[41]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[42]  H. Akaike A new look at the statistical model identification , 1974 .

[43]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[44]  Jie Zhang,et al.  Modelling and multi-objective optimal control of batch processes using recurrent neuro-fuzzy networks , 2006, Int. J. Autom. Comput..

[45]  Armando Blanco,et al.  A real-coded genetic algorithm for training recurrent neural networks , 2001, Neural Networks.

[46]  D. Rippin,et al.  Semi-batch process optimization under uncertainty: Theory and experiments , 1998 .

[47]  Chuen-Tsai Sun,et al.  Neuro-fuzzy And Soft Computing: A Computational Approach To Learning And Machine Intelligence [Books in Brief] , 1997, IEEE Transactions on Neural Networks.

[48]  Paul C. Rhodes,et al.  Essentials of Fuzzy Modelling and Control , 1995 .

[49]  Martin Brown,et al.  Neurofuzzy adaptive modelling and control , 1994 .

[50]  A. Morris,et al.  Artificial neural networks : studies in process modelling and control : Process operation and control , 1994 .

[51]  Ronald R. Yager,et al.  Essentials of fuzzy modeling and control , 1994 .

[52]  W. Harmon Ray,et al.  Creating efficient nonlinear neural network process models that allow model interpretation , 1993 .

[53]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[54]  W. C. Li,et al.  Newton-type control strategies for constrained nonlinear processes , 1989 .

[55]  K. Åström,et al.  Adaptive Control , 1989 .

[56]  I. J. Leontaritis,et al.  Model selection and validation methods for non-linear systems , 1987 .

[57]  B. Kowalski,et al.  Partial least-squares regression: a tutorial , 1986 .

[58]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[59]  T. J. McAvoy,et al.  Dynamics of pH in Controlled Stirred Tank Reactor , 1972 .