Knottedness is in NP, modulo GRH

Given a tame knot K presented in the form of a knot diagram, we show that the problem of determining whether K is knotted is in the complexity class NP, assuming the generalized Riemann hypothesis (GRH). In other words, there exists a polynomial-length certificate that can be verified in polynomial time to prove that K is non-trivial. GRH is not needed to believe the certificate, but only to find a short certificate. This result complements the result of Hass, Lagarias, and Pippenger that unknottedness is in NP. Our proof is a corollary of major results of others in algebraic geometry and geometric topology.

[1]  Pascal Koiran Hilbert's Nullstellensatz Is in the Polynomial Hierarchy , 1996, J. Complex..

[2]  D. B. McReynolds,et al.  Extremal behavior of divisibility functions , 2012, 1211.4727.

[3]  Vaughan R. Pratt,et al.  Every Prime has a Succinct Certificate , 1975, SIAM J. Comput..

[4]  Nathan Broaddus Noncyclic Covers of Knot Complements , 2005 .

[5]  Chad Musick Recognizing trivial links in polynomial time , 2011 .

[6]  Peter J. Weinberger Finding the Number of Factors of a Polynomial , 1984, J. Algorithms.

[7]  Gary L. Miller,et al.  Riemann's Hypothesis and tests for primality , 1975, STOC.

[8]  Peter Kronheimer,et al.  Dehn surgery, the fundamental group and {\itshape SU}(2) , 2004 .

[9]  M. Freedman,et al.  Simulation of Topological Field Theories¶by Quantum Computers , 2000, quant-ph/0001071.

[10]  Stavros Garoufalidis,et al.  Non-triviality of the A-polynomial for knots in S^3 , 2004 .

[11]  Gilles Brassard,et al.  A note on the complexity of cryptography (Corresp.) , 1979, IEEE Trans. Inf. Theory.

[12]  Jeffrey C. Lagarias,et al.  The computational complexity of knot and link problems , 1999, JACM.

[13]  M. Rabin Probabilistic algorithm for testing primality , 1980 .

[14]  Silvio Micali,et al.  Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems , 1991, JACM.

[15]  Dorit Aharonov,et al.  A Polynomial Quantum Algorithm for Approximating the Jones Polynomial , 2008, Algorithmica.

[16]  John Hempel,et al.  RESIDUAL FINITENESS FOR 3-MANIFOLDS , 1987 .

[17]  Khalid Bou-Rabee,et al.  Quantifying residual finiteness , 2008, 0807.0862.

[18]  P. B. Kronheimer,et al.  Dehn surgery, the fundamental group and SU(2) , 2003 .

[19]  Manindra Agrawal,et al.  PRIMES is in P , 2004 .

[20]  Shafi Goldwasser,et al.  Private coins versus public coins in interactive proof systems , 1986, STOC '86.

[21]  László Babai,et al.  Arthur-Merlin Games: A Randomized Proof System, and a Hierarchy of Complexity Classes , 1988, J. Comput. Syst. Sci..

[22]  Tatsuaki Okamoto On Relationships between Statistical Zero-Knowledge Proofs , 2000, J. Comput. Syst. Sci..

[23]  A. Atkin,et al.  ELLIPTIC CURVES AND PRIMALITY PROVING , 1993 .

[24]  Scott Aaronson,et al.  The Complexity Zoo , 2008 .

[25]  W. Haken Theorie der Normalflächen , 1961 .

[26]  Joe Kilian,et al.  Primality testing using elliptic curves , 1999, JACM.