Performance of novel VUV-sensitive Silicon Photo-Multipliers for nEXO

Liquid xenon time projection chambers are promis-ing detectors to search for neutrinoless double beta decay (0 νββ ), due to their response uniformity, monolithic sensitive volume, scalability to large target masses, and suitability for extremely low background operations. The nEXO collaboration has designed a tonne-scale time projection chamber that aims to search for 0 νββ of 136 Xe with projected half-life sensitivity of 1 . 35 × 10 28 yr. To reach this sensitivity, the design goal for nEXO is ≤ 1% energy resolution at the decay Q -value (2458 . 07 ± 0 . 31 keV). Reaching this resolution requires the efficient collection of both the ionization and scintillation produced in the detector. The nEXO design employs Silicon Photo-Multipliers (SiPMs) to detect the vacuum ultra-violet, 175 nm scintillation light of liquid xenon. This paper reports on the characterization of the newest vacuum ultra-violet sensitive Fondazione Bruno Kessler VUVHD3 SiPMs specifically designed for nEXO, as well as new measurements on new test samples of previously characterised Hamamatsu VUV4 Multi Pixel Photon Counters (MPPCs). Various SiPM and MPPC parameters, such as dark noise, gain, direct crosstalk, correlated avalanches and photon detection efficiency were measured as a function of the applied over voltage and wavelength at liquid xenon temperature (163 K). The results from this study are used to provide updated estimates of the achievable energy resolution at the decay Q -value for the nEXO design.

A. K. Soma | V. Radeka | V. Riot | A. Dragone | Z. Li | S. Parent | S. Charlebois | J. Pratte | L. Fabris | M. Heffner | F. Retière | D. Moore | A. Piepke | G. Gratta | T. Brunner | E. Caden | L. Wen | A. Pocar | R. Saldanha | A. Odian | P. Gautam | R. DeVoe | J. Ringuette | D. Gallacher | R. Collister | C. Malbrunot | S. Rescia | J. Farine | R. Maclellan | G. Giacomini | M. Worcester | C. Licciardi | R. Tsang | E. Bernard | D. Goeldi | I. Kotov | A. Kuchenkov | I. Badhrees | V. Belov | C. Chambers | T. Daniels | M. Dolinski | W. Fairbank | R. Gornea | A. Jamil | A. Karelin | L. Kaufman | D. Leonard | B. Mong | K. Murray | P. Rowson | V. Stekhanov | M. Wagenpfeil | U. Wichoski | O. Zeldovich | T. Ziegler | G. Lessard | X. Sun | J. Masbou | B. Lenardo | A. Bolotnikov | E. Raguzin | E. Angelico | E. Hoppe | A. Bhat | R. Krucken | T. Tsang | T. Bhatta | L. Darroch | J. Echevers | A. Iverson | A. Larson | T. Totev | Y. Wang | J. Hossl | E. Brown | I. Arnquist | E. Hein | J. Brodsky | S. Sangiorgio | M. Vacri | S. Triambak | C. Hardy | B. Cleveland | K. Wamba | C. Natzke | J. Bane | G. Cao | M. Vidal | S. Wilde | J. Nattress | G. S. Ortega | A. House | G. Li | D. Chernyak | S. Hedges | G. Visser | F. Vachon | G. Gallina | P. Margetak | L. Martin | N. Massacret | P. Arsenault | R. Lindsay | J. Ondze | C. Overman | S. A. Kharusi | L. Cao | B. Chana | M. Chiu | J. Dalmasson | M. Elbeltagi | T. Rossignol | M. Walent | Q. Wang | W. Wu | X. Wu | J. Zhao | F. Spadoni | W. Hunt | B. Rebeiro | T. Rao | L. Xie | J. Cohen | X. Jiang | K. Deslandes | Y. Fu | S. Li | L. Yang | G. Adhikari | W. Gillis | S. Thibado | H. Yang | W. Wang | K. Raymond | M. Mahtab | J. Orrell | J. Holt | S. Viel | K. McMichael | B. Eckert | M.Cvitan | A. Perna | K. Kumar | Y. Guan | J. Bolster | T. P. Franco | H. P. Smalley | Y. Ding | C. Gingras | K. Leach | S. Majidi | P. Martel-Dion | X. Ngwadla | N. Pletskova | G. J. Ramonnye | H. Rasiwala | G. Richardson | L. Rudolph | X. Shang | A. Tidball | O. A. Tyuka | M. Watts | W. Wei | W. Yan

[1]  A. Soter,et al.  Scintillation detectors with silicon photomultiplier readout in a dilution refrigerator at temperatures down to 0.2 K , 2022, Journal of Instrumentation.

[2]  M. Rescigno,et al.  SiPM cross-talk in liquid argon detectors , 2022, Frontiers in Physics.

[3]  L. Baudis,et al.  A measurement of the mean electronic excitation energy of liquid xenon , 2021, The European Physical Journal C.

[4]  F. Retière,et al.  Characterisation of SiPM Photon Emission in the Dark , 2021, Sensors.

[5]  A. K. Soma,et al.  nEXO: neutrinoless double beta decay search beyond 1028 year half-life sensitivity , 2021, Journal of Physics G: Nuclear and Particle Physics.

[6]  A. Manfredini,et al.  Design and construction of Xenoscope — a full-scale vertical demonstrator for the DARWIN observatory , 2021, Journal of Instrumentation.

[7]  A. K. Soma,et al.  Reflectivity of VUV-sensitive silicon photomultipliers in liquid Xenon , 2021, 2104.07997.

[8]  A. K. Soma,et al.  Event reconstruction in a liquid xenon Time Projection Chamber with an optically-open field cage , 2020, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[9]  M. Citterio,et al.  Cryogenic SiPM arrays for the DUNE photon detection system , 2020, 2001.09051.

[10]  G. Gallina Development of a single vacuum ultra-violet photon-sensing solution for nEXO , 2021 .

[11]  G. Borghi,et al.  FBK VUV-sensitive Silicon Photomultipliers for cryogenic temperatures , 2020 .

[12]  V. C. Antochi,et al.  Energy resolution and linearity of XENON1T in the MeV energy range , 2020, The European Physical Journal C.

[13]  S. Gundacker,et al.  The silicon photomultiplier: fundamentals and applications of a modern solid-state photon detector , 2020, Physics in medicine and biology.

[14]  A. K. Soma,et al.  Reflectance of Silicon Photomultipliers at Vacuum Ultraviolet Wavelengths , 2019, IEEE Transactions on Nuclear Science.

[15]  A. K. Soma,et al.  Reflectivity and PDE of VUV4 Hamamatsu SiPMs in liquid xenon , 2019, Journal of Instrumentation.

[16]  Y. H. Lin,et al.  Measurement of the scintillation and ionization response of liquid xenon at MeV energies in the EXO-200 experiment , 2019, 1908.04128.

[17]  F. Retière,et al.  Characterization of SiPM Avalanche Triggering Probabilities , 2019, IEEE Transactions on Electron Devices.

[18]  Y. H. Lin,et al.  Characterization of the Hamamatsu VUV4 MPPCs for nEXO , 2019, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[19]  T. Mori,et al.  Large-area MPPC with enhanced VUV sensitivity for liquid xenon scintillation detector , 2018, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[20]  L. Baudis,et al.  Characterisation of Silicon Photomultipliers for liquid xenon detectors , 2018, Journal of Instrumentation.

[21]  Y. H. Lin,et al.  VUV-Sensitive Silicon Photomultipliers for Xenon Scintillation Light Detection in nEXO , 2018, IEEE Transactions on Nuclear Science.

[22]  C. Piemonte,et al.  DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS , 2017, The European Physical Journal Plus.

[23]  F. Retiere,et al.  A method for characterizing after-pulsing and dark noise of PMTs and SiPMs , 2017, 1703.06204.

[24]  C. Piemonte,et al.  Cryogenic Characterization of FBK HD Near-UV Sensitive SiPMs , 2016, IEEE Transactions on Electron Devices.

[25]  Peter Takacs,et al.  Characterization and acceptance testing of fully depleted thick CCDs for the large synoptic survey telescope , 2016, Astronomical Telescopes + Instrumentation.

[26]  L. Fabris Novel readout design criteria for SiPM-based radiation detectors , 2016 .

[27]  S. Westerdale A study of nuclear recoil backgrounds in dark matter detectors , 2016 .

[28]  Kiwamu Saito,et al.  High-accuracy measurement of the emission spectrum of liquid xenon in the vacuum ultraviolet region , 2015 .

[29]  Kyle Boone,et al.  Delayed avalanches in Multi-Pixel Photon Counters , 2012, 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC).

[30]  M. Tripathi,et al.  NEST: A Comprehensive Model for Scintillation Yield in Liquid Xenon , 2011, 1106.1613.

[31]  E. Aprile,et al.  Liquid Xenon Detectors for Particle Physics and Astrophysics , 2009, 0910.4956.

[32]  R. C. Barber,et al.  Q value for the double-β decay of 136Xe , 2010 .

[33]  Fabrice Retiere,et al.  Characterization of Multi Pixel Photon Counters for T2K Near Detector , 2009 .

[34]  E. G. Myers,et al.  Mass and double-beta-decay Q value of 136Xe. , 2007, Physical review letters.

[35]  E. Conti,et al.  Correlated fluctuations between luminescence and ionization in liquid xenon , 2003, hep-ex/0303008.

[36]  A. Hitachi,et al.  Absolute Scintillation Yields in Liquid Argon and Xenon for Various Particles , 2002 .

[37]  J. Seguinot,et al.  Liquid xenon scintillation: photon yield and Fano factor measurements , 1995 .

[38]  W. Kloosterman,et al.  A new analytical diode model including tunneling and avalanche breakdown , 1992 .

[39]  A. Hitachi,et al.  Effect of ionization density on the time dependence of luminescence from liquid argon and xenon , 1983 .

[40]  W. T. Ziegler,et al.  Vapor Pressure and Heats of Vaporization and Sublimation of Liquids and Solids of Interest in Cryogenics below 1-atm Pressure , 1980 .

[41]  S. Kubota,et al.  Dynamical behavior of free electrons in the recombination process in liquid argon, krypton, and xenon , 1979 .

[42]  Marlo Martin Exciton Self‐Trapping in Rare‐Gas Crystals , 1971 .