Noise rejection in parameters identification for piecewise linear fuzzy models

The fuzzy model identification problem from noisy data is addressed. The piecewise linear fuzzy model structure is used as a nonlinear prototype for a multi-input, single-output unknown system. The consequent of the fuzzy model is identified using noisy data, e.g. collected from experiments on a real system. The identification procedure is formulated within the Frisch scheme, well established for linear systems, which has been modified and improved to be applied in fuzzy systems field.