Diversity of Pareto front: A multiobjective genetic algorithm based on dominating information

In this paper, the diversity information included by dominating number is analyzed, and the probabilistic relationship between dominating number and diversity in the space of objective function is proved. A ranking method based on dominating number is proposed to build the Pareto front. Without increasing basic Pareto method’s computation complexity and introducing new parameters, a new multiobjective genetic algorithm based on proposed ranking method (MOGA-DN) is presented. Simulation results on function optimization and parameters optimization of control system verify the efficiency of MOGA-DN.

[1]  Susana Cecilia Esquivel Evolutionary algorithms for solving multi-objetive problems . Carlos A. Coello Coello, David A. van Veldhuizen and Gary R., Lamont , 2002 .

[2]  Thomas Bäck,et al.  Evolutionary Algorithms in Theory and Practice , 1996 .

[3]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[4]  D. Sarkar,et al.  Pareto-optimal solutions for multi-objective optimization of fed-batch bioreactors using nondominated sorting genetic algorithm. , 2005 .

[5]  Carlos A. Coello Coello,et al.  Constraint-handling in genetic algorithms through the use of dominance-based tournament selection , 2002, Adv. Eng. Informatics.

[6]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[7]  Carlos A. Coello Coello,et al.  Evolutionary multi-objective optimization: a historical view of the field , 2006, IEEE Comput. Intell. Mag..

[8]  Raphael T. Haftka,et al.  Response surface approximation of Pareto optimal front in multi-objective optimization , 2007 .

[9]  Kalyanmoy Deb,et al.  Portfolio optimization with an envelope-based multi-objective evolutionary algorithm , 2009, Eur. J. Oper. Res..

[10]  Hajime Kita,et al.  Multi-objective optimization by genetic algorithms: a review , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[11]  C. R. Cutler,et al.  Dynamic matrix control¿A computer control algorithm , 1979 .

[12]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[13]  Neil A. Thacker,et al.  Automatic Parameter Selection for Object Recognition Using a Parallel Multiobjective Genetic Algorithm , 1997, CAIP.

[14]  Serge Domenech,et al.  Strategies for multiobjective genetic algorithm development: Application to optimal batch plant design in process systems engineering , 2008, Comput. Ind. Eng..

[15]  S.L. Ho,et al.  Incorporating A Priori Preferences in a Vector PSO Algorithm to Find Arbitrary Fractions of the Pareto Front of Multiobjective Design Problems , 2008, IEEE Transactions on Magnetics.

[16]  Thomas E. Marlin,et al.  Process Control: Designing Processes and Control Systems for Dynamic Performance , 1995 .