A decade of piezoresponse force microscopy: progress, challenges, and opportunities

Coupling between electrical and mechanical phenomena is a near-universal characteristic of inorganic and biological systems alike, with examples ranging from piezoelectricity in ferroelectric perovskites to complex, electromechanical couplings in electromotor proteins in cellular membranes. Understanding electromechanical functionality in materials such as ferroelectric nanocrystals and thin films, relaxor ferroelectrics, and biosystems requires probing these properties on the nanometer level of individual grain, domain, or protein fibril. In the last decade, piezoresponse force microscopy (PFM) was established as a powerful tool for nanoscale imaging, spectroscopy, and manipulation of ferroelectric materials. Here, we present principles and recent advances in PFM, including vector and frequency-dependent imaging of piezoelectric materials, briefly review applications for ferroelectric materials, discuss prospects for electromechanical imaging of local crystallographic and molecular orientations and disorder, and summarize future challenges and opportunities for PFM emerging in the second decade since its invention

[1]  J. Valasek Piezo-Electric and Allied Phenomena in Rochelle Salt , 1921 .

[2]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[3]  Sergei V. Kalinin,et al.  Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics , 2006 .

[4]  Zhengkui Xu,et al.  Abnormal piezoresponse behavior of Pb(Mg1/3Nb2/3)O3–30%PbTiO3 single crystal studied by high-vacuum scanning force microscope , 2003 .

[5]  Wenhui Ma,et al.  Polarization imprint in ordered arrays of epitaxial ferroelectric nanostructures , 2004 .

[6]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.

[7]  Luigi Galvani,et al.  Commentary on the Effect of Electricity on Muscular Motion , 1953 .

[8]  A. Gruverman,et al.  Scanning force microscopy for the study of domain structure in ferroelectric thin films , 1996 .

[9]  V. Gopalan,et al.  Coercive fields in ferroelectrics: A case study in lithium niobate and lithium tantalate , 2002 .

[10]  D. Bonnell Scanning tunneling microscopy and spectroscopy: Theory, techniques, and applications , 1993 .

[11]  Materials contrast in piezoresponse force microscopy , 2006, cond-mat/0603010.

[12]  R. Waser,et al.  Piezoresponse in the light of surface adsorbates: Relevance of defined surface conditions for perovskite materials , 2004 .

[13]  K. Dransfeld,et al.  Local poling of ferroelectric polymers by scanning force microscopy , 1992 .

[14]  Andrew A. Marino,et al.  Piezoelectric Effect and Growth Control in Bone , 1970, Nature.

[15]  Stephen Jesse,et al.  Dynamic behaviour in piezoresponse force microscopy. , 2006, Nanotechnology.

[16]  Angus I. Kingon,et al.  Three-dimensional high-resolution reconstruction of polarization in ferroelectric capacitors by piezoresponse force microscopy , 2004 .

[17]  J. K. Gimzewski,et al.  Observation of nuclear fusion driven by a pyroelectric crystal , 2005, Nature.

[18]  D. Weide,et al.  High-frequency near-field microscopy , 2002 .

[19]  Ute Rabe,et al.  Nanomechanical surface characterization by atomic force acoustic microscopy , 1997 .

[20]  K. Franke,et al.  Modification and detection of domains on ferroelectric PZT films by scanning force microscopy , 1994 .

[21]  U. Böttger,et al.  Differentiating 180° and 90° switching of ferroelectric domains with three-dimensional piezoresponse force microscopy , 2000 .

[22]  T. Zijlstra,et al.  Design and performance of a high-resolution frictional force microscope with quantitative three-dimensional force sensitivity , 2005 .

[23]  George M. Pharr,et al.  Instrumented Indentation Testing , 2000 .

[24]  David A. Scrymgeour,et al.  Nanoscale piezoelectric response across a single antiparallel ferroelectric domain wall , 2005, cond-mat/0503230.

[25]  V. Shvartsman,et al.  Domain structure of0.8Pb(Mg1/3Nb2/3)O3−0.2PbTiO3studied by piezoresponse force microscopy , 2004 .

[26]  Steve Dunn,et al.  Atomic Polarization and Local Reactivity on Ferroelectric Surfaces: A New Route toward Complex Nanostructures , 2002 .

[27]  P. Muralt,et al.  Polarization reversal due to charge injection in ferroelectric films , 2005 .

[28]  M. Charles Liberman,et al.  Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier , 2002, Nature.

[29]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[30]  Eiichi Fukada,et al.  Piezoelectricity of Wood , 1955 .

[31]  A. Kingon,et al.  Spatial inhomogeneity of imprint and switching behavior in ferroelectric capacitors , 2003 .

[32]  Local electromechanical properties of ferroelectric materials for piezoelectric applications , 2004 .

[33]  A. M. Glass,et al.  Principles and Applications of Ferroelectrics and Related Materials , 1977 .

[34]  Angus I. Kingon,et al.  Piezoelectric measurements with atomic force microscopy , 1998 .

[35]  W. Arnold,et al.  High-frequency response of atomic-force microscope cantilevers , 1997 .

[36]  E. Fukada,et al.  Poiseuille Medal Award Lecture: Piezoelectricity of Biopolymers , 1995 .

[37]  R. Pankrath,et al.  Ferroelectric nanodomains in the uniaxial relaxor system Sr 0.61-x Ba 0.39 Nb 2 O 6 :Ce 3+ x , 2001 .

[38]  Larry L. Hench,et al.  Principles of electronic ceramics , 1990 .

[39]  M. Abplanalp Piezoresponse scanning force microscopy of ferroelectric domains , 2001 .

[40]  The study of screening phenomena under the nano‐domain formation in ferroelectric semiconductors , 2006 .

[41]  D. Sarid Scanning Force Microscopy: With Applications To Electric, Magnetic, And Atomic Forces , 1991 .

[42]  M. Alexe,et al.  Contact resonances in voltage-modulated force microscopy , 2003 .

[43]  Stephen Jesse,et al.  Switching spectroscopy piezoresponse force microscopy of ferroelectric materials , 2006 .

[44]  J. Glatz-Reichenbach,et al.  The local piezoelectric activity of thin polymer films observed by scanning tunneling microscopy , 1991 .

[45]  H. Okino,et al.  Contact-Resonance Piezoresponse Force Microscope and Its Application to Domain Observation of Pb(Mg1/3Nb2/3)O3–PbTiO3 Single Crystals , 2003 .

[46]  A. Gruverman,et al.  Scanning force microscopy of domain structure in ferroelectric thin films: Imaging and control , 1997 .

[47]  L. Gauckler,et al.  Ceramic Parts Patterned in the Micrometer Range , 1999 .

[48]  Robert Plonsey,et al.  Bioelectricity: A Quantitative Approach Duke University’s First MOOC , 2013 .

[49]  Y. Rosenwaks,et al.  Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy , 2003 .

[50]  V. A. Bazhenov,et al.  Piezoelectric properties of wood , 1961 .

[51]  Angus I. Kingon,et al.  Direct studies of domain switching dynamics in thin film ferroelectric capacitors , 2005 .

[52]  R. Waser,et al.  Three-Dimensional Electric Field Probing of Ferroelectrics on the Nanometer Scale Using Scanning Force Microscopy , 2001 .

[53]  V. Shvartsman,et al.  Domain structure of 0.8Pb(Mg1/3Nb2/3)O3-0.2PbTiO3 studied by piezoresponse force microscopy , 2004 .

[54]  Eiichi Fukada,et al.  On the Piezoelectric Effect of Bone , 1957 .

[55]  Carlos Zaldo,et al.  Nonlinear local piezoelectric deformation in ferroelectric thin films studied by scanning force microscopy , 2005 .

[56]  B. Huey SPM Measurements of Ferroelectrics at MHZ Frequencies , 2004 .

[57]  M. Reece,et al.  Ferroelectric/ferroelastic behavior and piezoelectric response of lead zirconate titanate thin films under nanoindentation , 2005 .

[58]  Sergei V. Kalinin,et al.  Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy , 2005 .

[59]  Kenji Kitamura,et al.  Microscale to nanoscale ferroelectric domain and surface engineering of a near-stoichiometric LiNbO3 crystal , 2003 .

[60]  Ahn,et al.  Electrostatic modulation of superconductivity in ultrathin GdBa2Cu3O7-x films , 1999, Science.

[61]  R. Poyato,et al.  Stress-induced depolarization of (Pb, La)TiO3 ferroelectric thin films by nanoindentation , 2001 .

[62]  Andrew A. Marino,et al.  Piezoelectricity in cementum, dentine and bone. , 1989, Archives of oral biology.

[63]  Boris A. Strukov,et al.  Ferroelectric Phenomena in Crystals , 1998 .

[64]  Ute Rabe,et al.  Vibrations of free and surface‐coupled atomic force microscope cantilevers: Theory and experiment , 1996 .

[65]  W. Arnold,et al.  Theoretical description of the transfer of vibrations from a sample to the cantilever of an atomic force microscope , 1997 .

[66]  Sergei V. Kalinin,et al.  Domain polarity and temperature induced potential inversion on the BaTiO3(100) surface , 2002 .

[67]  A. Ogale,et al.  Role of 90° domains in lead zirconate titanate thin films , 2000 .

[68]  K. Terabe,et al.  Nanoscale chemical etching of near-stoichiometric lithium tantalate , 2005 .

[69]  Genaro Zavala,et al.  Characterization of ferroelectric lead zirconate titanate films by scanning force microscopy , 1997 .

[70]  C A Bassett,et al.  Biologic significance of piezoelectricity , 1967, Calcified tissue research.

[71]  Private Communications , 2001 .

[72]  Sergei V. Kalinin,et al.  Nanoelectromechanics of polarization switching in piezoresponse force microscopy , 2004, cond-mat/0406383.

[73]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[74]  C. Gerber,et al.  Surface Studies by Scanning Tunneling Microscopy , 1982 .

[75]  J. Scott,et al.  Ferroelectric memories , 1997, Science.

[76]  Wolfgang Grellmann,et al.  Performance and analysis of recording microhardness tests , 1977 .

[77]  A. Tagantsev,et al.  Mechanical stress effect on imprint behavior of integrated ferroelectric capacitors , 2003 .

[78]  Masayuki Suzuki Review on Future Ferroelectric Nonvolatile Memory: FeRAM , 1995 .

[79]  K. Matsushige,et al.  Investigation of Nonswitching Regions in Ferroelectric Thin Films Using Scanning Force Microscopy , 2000 .

[80]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[81]  Sergei V. Kalinin,et al.  Ferroelectric Lithography of Multicomponent Nanostructures , 2004 .

[82]  Sergei V. Kalinin,et al.  Spatial resolution, information limit, and contrast transfer in piezoresponse force microscopy , 2006, Microscopy and Microanalysis.

[83]  W. Brownell,et al.  Micro- and nanomechanics of the cochlear outer hair cell. , 2001, Annual review of biomedical engineering.

[84]  Ricardo Garcia,et al.  Dynamic atomic force microscopy methods , 2002 .

[85]  Sergei V. Kalinin,et al.  Quantitative Probing of Electromechanical Phenomena on the Nanoscale By Piezoelectric Nanoindentation , 2006 .

[86]  M. I. Molotskii *,et al.  Dynamics of ferroelectric domain formation in an atomic force microscope , 2005 .

[87]  C. P. Shaw,et al.  Ultrahigh resolution of lead zirconate titanate 30/70 domains as imaged by piezoforce microscopy , 2002 .

[88]  A. Gruverman,et al.  Preface to Nanoscale Characterization of Ferroelectric Materials: Scanning Probe Microscopy Approach , 2004 .

[89]  F. Kollmann V. A. Bazhenov: Piezoelectric Properties of Wood (Authorized Translation from the Russian). Consultants Bureau, New York 1961. 180 S., 4°, 55 Abb. Preis: $ 9.50 , 1962 .

[90]  Grady S. White,et al.  The Importance of Distributed Loading and Cantilever Angle in Piezo-Force Microscopy , 2004 .

[91]  M. Alexe,et al.  Piezoresponse scanning force microscopy: What quantitative information can we really get out of piezoresponse measurements on ferroelectric thin films , 2001 .

[92]  Y. Rosenwaks,et al.  Ferroelectric domain engineering using atomic force microscopy tip arrays in the domain breakdown regime , 2005 .

[93]  Stephen Wolfram,et al.  The Mathematica Book , 1996 .

[94]  A. Popel,et al.  A membrane bending model of outer hair cell electromotility. , 2000, Biophysical journal.

[95]  Jong Up Jeon,et al.  Read/write mechanisms and data storage system using atomic force microscopy and MEMS technology. , 2002, Ultramicroscopy.

[96]  R. Shackleton A Quantitative Approach , 2005 .

[97]  K. Uchino,et al.  Crystal orientation dependence of piezoelectric properties of lead zirconate titanate near the morphotropic phase boundary , 1998 .

[98]  E. Fukada,et al.  Piezoelectricity of biopolymers. , 1995, Biorheology.

[99]  Haojiang,et al.  INDENTATION OF A TRANSVERSELY ISOTROPIC PIEZOELECTRIC HALF-SPACE BY A RIGID SPHERE , 1999 .

[100]  N. S. Barnett,et al.  Private communication , 1969 .

[101]  V. Shvartsman,et al.  Polar nanodomains and local ferroelectric phenomena in relaxor lead lanthanum zirconate titanate ceramics , 2005 .

[102]  Coherent ferroelectric switching by atomic force microscopy , 2004, cond-mat/0401333.

[103]  A. Gruverman,et al.  Nanoscale visualization and control of ferroelectric domains by atomic force microscopy. , 1995, Physical review letters.

[104]  A. Gruverman,et al.  Switching properties of self-assembled ferroelectric memory cells , 1999 .

[105]  Keiichi Nakamoto,et al.  Resonance frequency and Q factor mapping by ultrasonic atomic force microscopy , 2001 .

[106]  Nanoscale Electric Phenomena at Oxide Surfaces and Interfaces by Scanning Probe Microscopy , 2002, cond-mat/0209599.

[107]  Mark Kachanov,et al.  Point force and point electric charge in infinite and semi-infinite transversely isotropic piezoelectric solids , 2000 .

[108]  R. Waser,et al.  Comparison of in-plane and out-of-plane optical amplification in AFM measurements , 2005 .

[109]  T. Giamarchi,et al.  Domain wall roughness in epitaxial ferroelectric PbZr0.2Ti0.8O3 thin films. , 2004, Physical review letters.

[110]  R. Landauer Electrostatic Considerations in BaTiO3 Domain Formation during Polarization Reversal , 1957 .

[111]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[112]  A. Giannakopoulos,et al.  Mechanical and electrical responses of piezoelectric solids to conical indentation , 2000 .

[113]  Gil Rosenman,et al.  Piezoelectric Effect in Human Bones Studied in Nanometer Scale , 2004 .

[114]  Sergei V. Kalinin,et al.  Nanoelectromechanics of piezoresponse force microscopy , 2004, cond-mat/0408223.

[115]  J. Anderson,et al.  Piezoelectric Properties of Dry and Wet Bone , 1970, Nature.

[116]  Sergei V. Kalinin,et al.  Temperature dependence of polarization and charge dynamics on the BaTiO3(100) surface by scanning probe microscopy , 2001 .

[117]  H. Güntherodt,et al.  Nanoscale reconstruction of surface crystallography from three-dimensional polarization distribution in ferroelectric barium-titanate ceramics , 1999 .

[118]  Electromechanical detection in scanning probe microscopy: Tip models and materials contrast , 2006, cond-mat/0607543.

[119]  V. Palkar,et al.  Ferroelectric thin films of PbTiO3 on silicon , 1999 .

[120]  Stephen Jesse,et al.  Resonance enhancement in piezoresponse force microscopy: Mapping electromechanical activity, contact stiffness, and Q factor , 2006 .

[121]  Y. Eugene Pak,et al.  Principle of ferroelectric domain imaging using atomic force microscope , 2001 .

[122]  Anna N. Morozovska,et al.  Screening and size effects on the nanodomain tailoring in ferroelectrics semiconductors , 2006 .

[123]  B. Strukov,et al.  Ferroelectric Phenomena in Crystals: Physical Foundations , 1998 .

[124]  C. Choy,et al.  Domain structure and evolution in (PbMg1∕3Nb2∕3O3)0.75(PbTiO3)0.25 single crystal studied by temperature-dependent piezoresponse force microscopy , 2005 .

[125]  Sergei V. Kalinin,et al.  Modeling and measurement of surface displacements in BaTiO3 bulk material in piezoresponse force microscopy , 2004 .

[126]  Jacqueline Krim,et al.  Foundations of Nanomechanics: From Solid-State Theory to Device Applications , 2004 .

[127]  P. Migliorato,et al.  Probing domains at the nanometer scale in piezoelectric thin films , 1999 .

[128]  M. Calzada,et al.  Ferroelectric hysteresis loops of (Pb,Ca)TiO3 thin films under spherical indentation , 2004 .

[129]  Sergei V. Kalinin,et al.  Bioelectromechanical imaging by scanning probe microscopy: Galvani's experiment at the nanoscale. , 2006, Ultramicroscopy.

[130]  David B. Williams,et al.  Vector Piezoresponse Force Microscopy , 2006, Microscopy and Microanalysis.

[131]  N. D. Rooij,et al.  Assessment of insulated conductive cantilevers for biology and electrochemistry , 2005 .

[132]  O. Ambacher,et al.  Piezoresponse force microscopy for polarity imaging of GaN , 2002 .

[133]  I. Aksay,et al.  Self-assembled ceramics produced by complex-fluid templation. , 2000, Annual review of physical chemistry.

[134]  I. S. Zheludev Piezoelectricity in Textured Media , 1974 .

[135]  M. Tyunina,et al.  Relaxation of induced polar state in relaxor PbMg1∕3Nb2∕3O3 thin films studied by piezoresponse force microscopy , 2005 .

[136]  Rosalía Poyato,et al.  Stress-induced suppression of piezoelectric properties in PbTiO3:La thin films via scanning force microscopy , 2003 .

[137]  Gary L. Thompson,et al.  Electromechanical imaging of biological systems with sub-10 nm resolution , 2008 .

[138]  Y. Rosenwaks,et al.  Ferroelectric domain breakdown. , 2003, Physical review letters.

[139]  Robert E. Newnham,et al.  Properties of Materials: Anisotropy, Symmetry, Structure , 2005 .

[140]  D. Polla,et al.  PROCESSING AND CHARACTERIZATION OF PIEZOELECTRIC MATERIALS AND INTEGRATION INTO MICROELECTROMECHANICAL SYSTEMS , 1998 .

[141]  U. Gösele,et al.  Polarization imprint and size effects in mesoscopic ferroelectric structures , 2001 .

[142]  Sergei V. Kalinin,et al.  Effect of phase transition on the surface potential of the BaTiO3 (100) surface by variable temperature scanning surface potential microscopy , 2000 .

[143]  G. Rohrer,et al.  Spatially Selective Photochemical Reduction of Silver on the Surface of Ferroelectric Barium Titanate , 2001 .

[144]  Hiroshi Tokumoto,et al.  Imaging and control of domain structures in ferroelectric thin films via scanning force microscopy , 1998 .

[145]  F. Bai,et al.  Domain engineered states over various length scales in (001)-oriented Pb(Mg1∕3Nb2∕3)O3-x%PbTiO3 crystals: Electrical history dependence of hierarchal domains , 2005 .

[146]  Technology,et al.  Domain wall creep in epitaxial ferroelectric Pb(Zr(0.2)Ti(0.08)O(3) thin films. , 2002, Physical review letters.

[147]  Luigi Galvani,et al.  De viribus electricitatis in motu musculari , 1967 .

[148]  N. García,et al.  Surface charge compensation and ferroelectric domain structure of triglycine sulfate revealed by voltage-modulated scanning force microscopy , 2001 .

[149]  Anna N. Morozovska,et al.  Domain Nucleation and Hysteresis Loop Shape in Piezoresponse Force Spectroscopy , 2006 .

[150]  Sergei V. Kalinin,et al.  Quantitative analysis of nanoscale switching in SrBi 2 Ta 2 O 9 thin films by piezoresponse force microscopy , 2004 .

[151]  N. Takeda,et al.  Elastic mapping of heterogeneous nanostructures with ultrasonic force microscopy (UFM) , 1999 .

[152]  M. Molotskii Generation of ferroelectric domains in atomic force microscope , 2003 .

[153]  F. Bai,et al.  Domain hierarchy in annealed (001)-oriented Pb(Mg1∕3Nb2∕3)O3-x%PbTiO3 single crystals , 2004 .

[154]  Seungbum Hong Nanoscale phenomena in ferroelectric thin films , 2004 .

[155]  Sergei V. Kalinin,et al.  Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces , 2002 .

[156]  Subra Suresh,et al.  THEORY OF INDENTATION OF PIEZOELECTRIC MATERIALS , 1999 .

[157]  S. Lang,et al.  Pyroelectric Effect in Bone and Tendon , 1966, Nature.

[158]  J. Dec,et al.  Ferroelectric domain structures of PbTiO3 studied by scanning force microscopy , 2000 .

[159]  Massimiliano Labardi,et al.  Dynamical studies of the ferroelectric domain structure in triglycine sulfate by voltage-modulated scanning force microscopy , 2000 .

[160]  P. Günter,et al.  Higher order ferroic switching induced by scanning force microscopy. , 2001, Physical review letters.

[161]  Sergei V. Kalinin,et al.  Nanoelectromechanics of piezoelectric indentation and applications to scanning probe microscopies of ferroelectric materials , 2005 .

[162]  V. Shvartsman,et al.  Nanoscale domains and local piezoelectric hysteresis in Pb(Zn1/3Nb2/3)O3-4.5%PbTIO3 single crystals , 2003 .

[163]  M. Allegrini,et al.  Domain pattern formation and kinetics on ferroelectric surfaces under thermal cycling using scanning force microscopy , 2002 .