Vimentin filaments integrate low-complexity domains in a complex helical structure

[1]  J. Harvey,et al.  Molecular structure of soluble vimentin tetramers , 2023, Scientific reports.

[2]  J. Harvey,et al.  Stability profile of vimentin rod domain , 2022, Protein science : a publication of the Protein Society.

[3]  G. Bi,et al.  Isotropic reconstruction for electron tomography with deep learning , 2022, Nature Communications.

[4]  James A. Geraets,et al.  Molecular interactions of FG nucleoporin repeats at high resolution , 2022, Nature Chemistry.

[5]  J. Notbohm,et al.  Expression of vimentin alters cell mechanics, cell-cell adhesion, and gene expression profiles suggesting the induction of a hybrid EMT in human mammary epithelial cells , 2022, Frontiers in Cell and Developmental Biology.

[6]  B. Geiger,et al.  A network of mixed actin polarity in the leading edge of spreading cells , 2022, bioRxiv.

[7]  S. Raunser,et al.  Structural basis of actin filament assembly and aging , 2022, bioRxiv.

[8]  S. McKnight,et al.  How do protein domains of low sequence complexity work? , 2021, RNA.

[9]  J. Tinevez,et al.  Molecular organization and mechanics of single vimentin filaments revealed by super-resolution imaging , 2021, bioRxiv.

[10]  J. Fredberg,et al.  Vimentin intermediate filaments and filamentous actin form unexpected interpenetrating networks that redefine the cell cortex , 2021, bioRxiv.

[11]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[12]  Anthony Brown,et al.  A review and analysis of the clinical literature on Charcot–Marie–Tooth disease caused by mutations in neurofilament protein L , 2021, Cytoskeleton.

[13]  O. Medalia,et al.  Unveiling the polarity of actin filaments by cryo-electron tomography , 2021, Structure.

[14]  I. Lomakin,et al.  Recent insight into intermediate filament structure. , 2020, Current opinion in cell biology.

[15]  Pavel Tomancak,et al.  The ImageJ ecosystem: Open‐source software for image visualization, processing, and analysis , 2020, Protein science : a publication of the Protein Society.

[16]  O. Medalia,et al.  A lamin A/C variant causing striated muscle disease provides insights into filament organization , 2020, Journal of Cell Science.

[17]  R. Tycko,et al.  Transiently structured head domains control intermediate filament assembly , 2020, Proceedings of the National Academy of Sciences.

[18]  Tristan Bepler,et al.  Topaz-Denoise: general deep denoising models for cryoEM and cryoET , 2019, Nature Communications.

[19]  S. Cai,et al.  High stretchability, strength, and toughness of living cells enabled by hyperelastic vimentin intermediate filaments , 2019, Proceedings of the National Academy of Sciences.

[20]  I. Lomakin,et al.  Human keratin 1/10‐1B tetramer structures reveal a knob‐pocket mechanism in intermediate filament assembly , 2019, The EMBO journal.

[21]  José María Carazo,et al.  Automatic local resolution-based sharpening of cryo-EM maps , 2018, bioRxiv.

[22]  F. Danielsson,et al.  Vimentin Diversity in Health and Disease , 2018, Cells.

[23]  Ludwig Kappos,et al.  Neurofilaments as biomarkers in neurological disorders , 2018, Nature Reviews Neurology.

[24]  W. H. Goldmann,et al.  Assembly Kinetics of Vimentin Tetramers to Unit-Length Filaments: A Stopped-Flow Study. , 2018, Biophysical journal.

[25]  R. Tycko,et al.  Structure of FUS Protein Fibrils and Its Relevance to Self-Assembly and Phase Separation of Low-Complexity Domains , 2017, Cell.

[26]  Gregory F Weber,et al.  Intermediate Filaments at the Junction of Mechanotransduction, Migration, and Development , 2017, Front. Cell Dev. Biol..

[27]  Robert D. Goldman,et al.  The molecular architecture of lamins in somatic cells , 2017, Nature.

[28]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[29]  J. Briggs,et al.  Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging , 2017, Journal of structural biology.

[30]  Wei Dai,et al.  Convolutional Neural Networks for Automated Annotation of Cellular Cryo-Electron Tomograms , 2017, Nature Methods.

[31]  Kathryn A. Porter,et al.  The ClusPro web server for protein–protein docking , 2017, Nature Protocols.

[32]  Sjors H.W. Scheres,et al.  Helical reconstruction in RELION , 2016, bioRxiv.

[33]  W. Baumeister,et al.  Cryo-Electron Tomography: Can it Reveal the Molecular Sociology of Cells in Atomic Detail? , 2016, Trends in cell biology.

[34]  S. McKnight,et al.  Toxic PR Poly-Dipeptides Encoded by the C9orf72 Repeat Expansion Target LC Domain Polymers , 2016, Cell.

[35]  Sjors H W Scheres,et al.  Resolving macromolecular structures from electron cryo-tomography data using subtomogram averaging in RELION , 2016, Nature Protocols.

[36]  L. Betancourt,et al.  Identification of Vimentin as a Potential Therapeutic Target against HIV Infection , 2016, Viruses.

[37]  A. Hyman,et al.  Visualizing the molecular sociology at the HeLa cell nuclear periphery , 2016, Science.

[38]  Kai Zhang,et al.  Gctf: Real-time CTF determination and correction , 2015, bioRxiv.

[39]  Molly J. Rossow,et al.  Vimentin filament precursors exchange subunits in an ATP-dependent manner , 2015, Proceedings of the National Academy of Sciences.

[40]  S. Köster,et al.  Direct Observation of Subunit Exchange along Mature Vimentin Intermediate Filaments , 2014, Biophysical journal.

[41]  H. Tagare,et al.  The Local Resolution of Cryo-EM Density Maps , 2013, Nature Methods.

[42]  D. Agard,et al.  Electron counting and beam-induced motion correction enable near atomic resolution single particle cryoEM , 2013, Nature Methods.

[43]  S. Scheres RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[44]  W. Baumeister,et al.  Unraveling the structure of membrane proteins in situ by transfer function corrected cryo-electron tomography. , 2012, Journal of structural biology.

[45]  W. Chiu,et al.  Comparison of Segger and other methods for segmentation and rigid-body docking of molecular components in cryo-EM density maps. , 2012, Biopolymers.

[46]  J. Satsangi,et al.  A role for vimentin in Crohn disease , 2012, Autophagy.

[47]  U. Aebi,et al.  Atomic structure of the vimentin central α-helical domain and its implications for intermediate filament assembly , 2012, Proceedings of the National Academy of Sciences.

[48]  Jimin Pei,et al.  Cell-free Formation of RNA Granules: Low Complexity Sequence Domains Form Dynamic Fibers within Hydrogels , 2012, Cell.

[49]  Felix J. B. Bäuerlein,et al.  Focused ion beam micromachining of eukaryotic cells for cryoelectron tomography , 2012, Proceedings of the National Academy of Sciences.

[50]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[51]  A. Satelli,et al.  Vimentin in cancer and its potential as a molecular target for cancer therapy , 2011, Cellular and Molecular Life Sciences.

[52]  S. N. Murthy,et al.  Vimentin organization modulates the formation of lamellipodia , 2011, Molecular biology of the cell.

[53]  J. Rappsilber The beginning of a beautiful friendship: Cross-linking/mass spectrometry and modelling of proteins and multi-protein complexes , 2011, Journal of structural biology.

[54]  Felix J. B. Bäuerlein,et al.  Micromachining tools and correlative approaches for cellular cryo-electron tomography. , 2010, Journal of structural biology.

[55]  R. Goldman,et al.  Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[56]  M. Valle,et al.  Averaging of electron subtomograms and random conical tilt reconstructions through likelihood optimization. , 2009, Structure.

[57]  Markus J. Buehler,et al.  Hierarchical Structure Controls Nanomechanical Properties of Vimentin Intermediate Filaments , 2009, PloS one.

[58]  Leonardo G. Trabuco,et al.  Molecular dynamics flexible fitting: a practical guide to combine cryo-electron microscopy and X-ray crystallography. , 2009, Methods.

[59]  G. P. Padilla,et al.  Vimentin coil 1A-A molecular switch involved in the initiation of filament elongation. , 2009, Journal of molecular biology.

[60]  S. Bhattacharya,et al.  Dominant cataract formation in association with a vimentin assembly disrupting mutation. , 2009, Human molecular genetics.

[61]  Leonardo G. Trabuco,et al.  Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. , 2008, Structure.

[62]  E. Lane,et al.  The Human Intermediate Filament Database: comprehensive information on a gene family involved in many human diseases , 2008, Human mutation.

[63]  Friedrich Förster,et al.  Classification of cryo-electron sub-tomograms using constrained correlation. , 2008, Journal of structural biology.

[64]  Ueli Aebi,et al.  Intermediate filaments: from cell architecture to nanomechanics , 2007, Nature Reviews Molecular Cell Biology.

[65]  M. Inagaki,et al.  Role of phosphorylation on the structural dynamics and function of types III and IV intermediate filaments. , 2007, Experimental cell research.

[66]  A. Hoenger,et al.  Dissecting the 3-D structure of vimentin intermediate filaments by cryo-electron tomography. , 2007, Journal of structural biology.

[67]  Ueli Aebi,et al.  Monitoring intermediate filament assembly by small-angle x-ray scattering reveals the molecular architecture of assembly intermediates , 2006, Proceedings of the National Academy of Sciences.

[68]  U Aebi,et al.  Exploring the mechanical behavior of single intermediate filaments. , 2005, Journal of molecular biology.

[69]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[70]  V. Lučić,et al.  Structural studies by electron tomography: from cells to molecules. , 2005, Annual review of biochemistry.

[71]  Eran Perlson,et al.  Vimentin-Dependent Spatial Translocation of an Activated MAP Kinase in Injured Nerve , 2005, Neuron.

[72]  Friedrich Förster,et al.  TOM software toolbox: acquisition and analysis for electron tomography. , 2005, Journal of structural biology.

[73]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[74]  Robert D Goldman,et al.  Specific in vivo phosphorylation sites determine the assembly dynamics of vimentin intermediate filaments , 2004, Journal of Cell Science.

[75]  D. Tsuruta,et al.  The vimentin cytoskeleton regulates focal contact size and adhesion of endothelial cells subjected to shear stress , 2003, Journal of Cell Science.

[76]  U. Aebi,et al.  Conserved segments 1A and 2B of the intermediate filament dimer: their atomic structures and role in filament assembly , 2002, The EMBO journal.

[77]  D. Murrell,et al.  Keratin 14 point mutations at codon 119 of helix 1A resulting in different epidermolysis bullosa simplex phenotypes. , 2001, The Journal of investigative dermatology.

[78]  D. Parry,et al.  Subfilamentous Protofibril Structures in Fibrous Proteins , 2001, The Journal of Biological Chemistry.

[79]  A. Lustig,et al.  The intermediate filament protein consensus motif of helix 2B: its atomic structure and contribution to assembly. , 1999, Journal of molecular biology.

[80]  U Aebi,et al.  Characterization of distinct early assembly units of different intermediate filament proteins. , 1999, Journal of molecular biology.

[81]  M. Sakurai,et al.  Phosphorylation of Vimentin by Rho-associated Kinase at a Unique Amino-terminal Site That Is Specifically Phosphorylated during Cytokinesis* , 1998, The Journal of Biological Chemistry.

[82]  U Aebi,et al.  Structure and assembly properties of the intermediate filament protein vimentin: the role of its head, rod and tail domains. , 1996, Journal of molecular biology.

[83]  P. Steinert,et al.  The function of intermediate filaments in cell shape and cytoskeletal integrity , 1996, The Journal of cell biology.

[84]  D A Parry,et al.  Diversity of intermediate filament structure. Evidence that the alignment of coiled-coil molecules in vimentin is different from that in keratin intermediate filaments. , 1993, The Journal of biological chemistry.

[85]  G. Borisy,et al.  Steady state dynamics of intermediate filament networks , 1992, The Journal of cell biology.

[86]  P. Janmey,et al.  Viscoelastic properties of vimentin compared with other filamentous biopolymer networks , 1991, The Journal of cell biology.

[87]  K. Weber,et al.  Phosphorylation of desmin in vitro inhibits formation of intermediate filaments; identification of three kinase A sites in the aminoterminal head domain. , 1988, The EMBO journal.

[88]  M. Inagaki,et al.  Site-specific phosphorylation induces disassembly of vimentin filaments in vitro , 1987, Nature.

[89]  A. Steven,et al.  The molecular biology of intermediate filaments , 1985, Cell.

[90]  H. Erickson,et al.  Visualization of a 21-nm axial periodicity in shadowed keratin filaments and neurofilaments , 1982, The Journal of cell biology.

[91]  K. Weber,et al.  A periodic ultrastructure in intermediate filaments. , 1982, Journal of molecular biology.

[92]  J R Kremer,et al.  Computer visualization of three-dimensional image data using IMOD. , 1996, Journal of structural biology.

[93]  S. Danyluk,et al.  Structural Molecular Biology , 1982, NATO Advanced Study Institutes Series.