Blocking and Other Enhancements for Bottom-Up Model Generation Methods

Model generation is a problem complementary to theorem proving and is important for fault analysis and debugging of formal specifications of security protocols, programs and terminological definitions, for example. This paper discusses several ways of enhancing the paradigm of bottom-up model generation, with the two main contributions being a new range-restriction transformation and generalized blocking techniques. The range-restriction transformation refines existing transformations to range-restricted clauses by carefully limiting the creation of domain terms. The blocking techniques are based on simple transformations of the input set together with standard equality reasoning and redundancy elimination techniques, and allow for finding small, finite models. All possible combinations of the introduced techniques and a classical range-restriction technique were tested on the clausal problems of the TPTP Version 6.0.0 with an implementation based on the SPASS theorem prover using a hyperresolution-like refinement. Unrestricted domain blocking gave best results for satisfiable problems, showing that it is an indispensable technique for bottom-up model generation methods, that yields good results in combination with both new and classical range-restricting transformations. Limiting the creation of terms during the inference process by using the new range-restricting transformation has paid off, especially when using it together with a shifting transformation. The experimental results also show that classical range restriction with unrestricted blocking provides a useful complementary method. Overall, the results show bottom-up model generation methods are good for disproving theorems and generating models for satisfiable problems, but less efficient for unsatisfiable problems.

[1]  Renate A. Schmidt,et al.  A Tableau Calculus for Minimal Modal Model Generation , 2011, M4M/LAMAS.

[2]  Peter Baumgartner,et al.  The Hyper Tableaux Calculus with Equality and an Application to Finite Model Computation , 2010, J. Log. Comput..

[3]  Maria Paola Bonacina,et al.  Semantically-Guided Goal-Sensitive Reasoning: Inference System and Completeness , 2017, Journal of Automated Reasoning.

[4]  Gert Smolka,et al.  Terminating Tableau Systems for Hybrid Logic with Difference and Converse , 2009, J. Log. Lang. Inf..

[5]  Renate A. Schmidt,et al.  Synthesising and Implementing Tableau Calculi for Interrogative Epistemic Logics , 2012, PAAR@IJCAR.

[6]  Alexander Leitsch,et al.  The Resolution Calculus , 1997, Texts in Theoretical Computer Science An EATCS Series.

[7]  Michał Zawidzki Deductive Systems and the Decidability Problem for Hybrid Logics , 2014 .

[8]  François Bry,et al.  A Deduction Method Complete for Refutation and Finite Satisfiability , 1998, JELIA.

[9]  Christopher Lynch,et al.  Unsound Theorem Proving , 2004, CSL.

[10]  William McCune,et al.  Mace4 Reference Manual and Guide , 2003, ArXiv.

[11]  Renate A. Schmidt,et al.  A new methodology for developing deduction methods , 2009, Annals of Mathematics and Artificial Intelligence.

[12]  Christoph Weidenbach,et al.  System Description: SpassVersion 3.0 , 2007, CADE.

[13]  Barbara Petit,et al.  Semantics of Typed Lambda-Calculus with Constructors , 2010, Log. Methods Comput. Sci..

[14]  Maria Paola Bonacina,et al.  On the Modelling of Search in Theorem Proving - Towards a Theory of Strategy Analysis , 1998, Inf. Comput..

[15]  Renate A. Schmidt,et al.  Automated Synthesis of Tableau Calculi , 2011, Log. Methods Comput. Sci..

[16]  Ian Horrocks,et al.  A Tableaux Decision Procedure for SHOIQ , 2005, IJCAI.

[17]  Geoff Sutcliffe The TPTP Problem Library and Associated Infrastructure , 2009, Journal of Automated Reasoning.

[18]  Katsumi Inoue,et al.  Non-Horn Magic Sets to Incorporate Top-down Inference into Bottom-up Theorem Proving , 1997, CADE.

[19]  Andrei Voronkov,et al.  The design and implementation of VAMPIRE , 2002, AI Commun..

[20]  Renate A. Schmidt,et al.  Axiomatic and Tableau-Based Reasoning for Kt(H, R) , 2014, Advances in Modal Logic.

[21]  Renate A. Schmidt,et al.  The Tableau Prover Generator MetTeL2 , 2012, JELIA.

[22]  B. Nebel Introduction to Modal Logic Introduction , 2009 .

[23]  Nikolaj Bjørner,et al.  Bugs, Moles and Skeletons: Symbolic Reasoning for Software Development , 2010, IJCAR.

[24]  Max J. Cresswell,et al.  A New Introduction to Modal Logic , 1998 .

[25]  Christoph Wernhard,et al.  System Description : KRHyper , 2003 .

[26]  Hantao Zhang,et al.  SEM: a System for Enumerating Models , 1995, IJCAI.

[27]  Nachum Dershowitz,et al.  A Maximal-Literal Unit Strategy for Horn Clauses , 1990, CTRS.

[28]  Konstantin Korovin Instantiation-Based Automated Reasoning: From Theory to Practice , 2009, CADE.

[29]  Harald Ganzinger,et al.  Rewrite-Based Equational Theorem Proving with Selection and Simplification , 1994, J. Log. Comput..

[30]  François Bry,et al.  Positive Unit Hyper-Resolution Tableaux for Minimal Model Generation , 1997 .

[31]  K. Claessen,et al.  New Techniques that Improve MACE-style Finite Model Finding , 2007 .

[32]  Ullrich Hustadt,et al.  Computational Space Efficiency and Minimal Model Generation for Guarded Formulae , 2001, LPAR.

[33]  Dov M. Gabbay,et al.  Quantifier Elimination in Second-Order Predicate Logic , 1992, KR.

[34]  Renate A. Schmidt,et al.  A General Tableau Method for Deciding Description Logics, Modal Logics and Related First-Order Fragments , 2008, IJCAR.

[35]  Renate A. Schmidt,et al.  A bi-intuitionistic modal logic: Foundations and automation , 2016, J. Log. Algebraic Methods Program..

[36]  H. Ganzinger,et al.  Equational Reasoning in Saturation-Based Theorem Proving , 1998 .

[37]  Jaakko Hintikka Model minimization —An alternative to circumscription , 2004, Journal of Automated Reasoning.

[38]  I. Horrocks,et al.  A Tableau Decision Procedure for $\mathcal{SHOIQ}$ , 2007, Journal of Automated Reasoning.

[39]  Ricardo Caferra,et al.  Combining Enumeration and Deductive Techniques in order to Increase the Class of Constructible Infinite Models , 2000, J. Symb. Comput..

[40]  Michaël Rusinowitch,et al.  Proving refutational completeness of theorem-proving strategies: the transfinite semantic tree method , 1991, JACM.

[41]  F. Massacci Single Step Tableaux for Modal Logics Computational Properties, Complexity and Methodology , 2000 .

[42]  J. A. Robinson,et al.  Automatic Deduction with Hyper-Resolution , 1983 .

[43]  M. Fitting Proof Methods for Modal and Intuitionistic Logics , 1983 .

[44]  Mark E. Stickel,et al.  Upside-down meta-interpretation of the model elimination theorem-proving procedure for deduction and abduction , 1994, Journal of Automated Reasoning.

[45]  Renate A. Schmidt,et al.  A Refined Tableau Calculus with Controlled Blocking for the Description Logic SHOI , 2013, Description Logics.

[46]  R. Smullyan First-Order Logic , 1968 .

[47]  Francesco M. Donini,et al.  Decidable reasoning in terminological knowledge representation systems , 1993 .

[48]  Ian Horrocks,et al.  A Description Logic with Transitive and Inverse Roles and Role Hierarchies , 1999, J. Log. Comput..

[49]  Holger Hermanns,et al.  Logic for Programming, Artificial Intelligence, and Reasoning , 2010, Lecture Notes in Computer Science.

[50]  Christoph Weidenbach,et al.  MSPASS: Subsumption Testing with SPASS , 1999, Description Logics.

[51]  Stephan Schulz,et al.  System Description: E 1.8 , 2013, LPAR.

[52]  Peter Baumgartner,et al.  Computing Answers with Model Elimination , 1997, Artif. Intell..

[53]  Renate A. Schmidt,et al.  Computing Minimal Models Modulo Subset-Simulation for Modal Logics , 2013, FroCos.

[54]  K. Rustan M. Leino,et al.  Program extrapolation with jennisys , 2012, OOPSLA '12.

[55]  François Bry,et al.  Positive Unit Hyperresolution Tableaux and Their Application to Minimal Model Generation , 2004, Journal of Automated Reasoning.

[56]  Tobias Nipkow,et al.  Nitpick: A Counterexample Generator for Higher-Order Logic Based on a Relational Model Finder , 2010, ITP.

[57]  Steven K. Winker Generation and Verification of Finite Models and Counterexamples Using an Automated Theorem Prover Answering Two Open Questions , 1982, JACM.

[58]  Tim Geisler,et al.  Satchmo - The Compiling and Functional Variants , 1997, Journal of Automated Reasoning.

[59]  Peter Baumgartner,et al.  Hyper Tableaux with Equality , 2007, CADE.

[60]  Christoph Weidenbach,et al.  Combining Superposition, Sorts and Splitting , 2001, Handbook of Automated Reasoning.

[61]  Ian Horrocks,et al.  Practical Reasoning for Very Expressive Description Logics , 2000, Log. J. IGPL.

[62]  Saul A. Kripke,et al.  Semantical Analysis of Modal Logic I Normal Modal Propositional Calculi , 1963 .

[63]  Maria Paola Bonacina,et al.  On handling distinct objects in the superposition calculus , 2005, ICLP 2005.

[64]  Harald Ganzinger,et al.  New directions in instantiation-based theorem proving , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[65]  Peter Baumgartner,et al.  Computing finite models by reduction to function-free clause logic , 2009, J. Appl. Log..

[66]  Christian G. Fermüller,et al.  Hyperresolution and Automated Model Building , 1996, J. Log. Comput..

[67]  Albert Rubio,et al.  Paramodulation-Based Theorem Proving , 2001, Handbook of Automated Reasoning.

[68]  Peter Baumgartner,et al.  Semantically Guided Theorem Proving for Diagnosis Applications , 1997, IJCAI.

[69]  Björn Pelzer,et al.  System Description: E-KRHyper , 2007, CADE.

[70]  Ullrich Hustadt,et al.  On the Relation of Resolution and Tableaux Proof Systems for Description Logics , 1999, IJCAI.

[71]  Fabio Massacci,et al.  Single Step Tableaux for Modal Logics , 2000, Journal of Automated Reasoning.

[72]  Peter Baumgartner,et al.  Hyper Tableaux , 1996, JELIA.

[73]  W. McCune A Davis-Putnam program and its application to finite-order model search: Quasigroup existence problems , 1994 .

[74]  Peter Baumgartner Logical Engineering with Instance-Based Methods , 2007, CADE.

[75]  Franz Baader,et al.  An Overview of Tableau Algorithms for Description Logics , 2001, Stud Logica.

[76]  Renate A. Schmidt,et al.  Using Tableau to Decide Expressive Description Logics with Role Negation , 2007, ISWC/ASWC.

[77]  Diego Calvanese,et al.  The Description Logic Handbook , 2007 .

[78]  Sven Lorenz,et al.  A tableau prover for domain minimization , 1994, Journal of Automated Reasoning.

[79]  Maria Paola Bonacina,et al.  On Deciding Satisfiability by Theorem Proving with Speculative Inferences , 2011, Journal of Automated Reasoning.

[80]  Masayuki Fujita,et al.  Automatic Generation of Some Results in Finite Algebra , 1993, IJCAI.

[81]  Renate A. Schmidt,et al.  Computing Minimal Models Modulo Subset-Simulation for Propositional Modal Logics , 2013, FroCoS 2013.

[82]  Nicolas Peltier A calculus combining resolution and enumeration for building finite models , 2003, J. Symb. Comput..

[83]  Ullrich Hustadt,et al.  Resolution-Based Methods for Modal Logics , 2000, Log. J. IGPL.

[84]  A. Riazanov Implementing an Efficient Theorem Prover , 2003 .

[85]  Christoph Weidenbach,et al.  SPASS Version 3.5 , 2009, CADE.

[86]  François Bry,et al.  SATCHMO: A Theorem Prover Implemented in Prolog , 1988, CADE.

[87]  Renate A. Schmidt,et al.  Using tableau to decide description logics with full role negation and identity , 2012, ACM Trans. Comput. Log..

[88]  Harald Ganzinger,et al.  Resolution Theorem Proving , 2001, Handbook of Automated Reasoning.

[89]  Peter Baumgartner,et al.  Implementing the Model Evolution Calculus , 2006, Int. J. Artif. Intell. Tools.

[90]  Torben Braüner,et al.  Tableau-based Decision Procedures for Hybrid Logic , 2006, J. Log. Comput..

[91]  Harald Ganzinger,et al.  Integrating Equational Reasoning into Instantiation-Based Theorem Proving , 2004, CSL.

[92]  Marta Cialdea Mayer,et al.  Nominal Substitution at Work with the Global and Converse Modalities , 2010, Advances in Modal Logic.

[93]  Nachum Dershowitz,et al.  Critical Pair Criteria for Completion , 1988, J. Symb. Comput..

[94]  Ullrich Hustadt,et al.  Hyperresolution for guarded formulae , 2003, J. Symb. Comput..

[95]  Ullrich Hustadt,et al.  Using Resolution for Testing Modal Satisfiability and Building Models , 2002, Journal of Automated Reasoning.

[96]  Christian G. Fermüller,et al.  Model Building by Resolution , 1992, CSL.

[97]  Ullrich Hustadt,et al.  MSPASS: Modal Reasoning by Translation and First-Order Resolution , 2000, TABLEAUX.

[98]  Ullrich Hustadt,et al.  Issues of Decidability for Description Logics in the Framework of Resolution , 1998, FTP.

[99]  Renate A. Schmidt,et al.  MetTeL2: Towards a Tableau Prover Generation Platform , 2012, PAAR@IJCAR.

[100]  Hantao Zhang,et al.  MACE4 and SEM: A Comparison of Finite Model Generators , 2013, Automated Reasoning and Mathematics.