Thermodynamic properties of the most stable gaseous small silicon-carbon clusters in their ground states

The most stable structures of gaseous SimCn (3 ⩽ n+m ⩽ 6) clusters in their ground electronic states are determined with the high level electronic correlation method QCISD(T)/g3large. Thermodynamic properties on heat capacity (Cp,mΘ), entropy (SmΘ), Gibbs energy function (−[GΘ −HΘ(Tr)]/T) and enthalpy function (HΘ−HΘ(Tr)) are predicted with standard statistical thermodynamics using the structure parameters and vibrational frequencies obtained with B3PW91/6-31G(d) method combined with the electronic excitation energies determined with time dependent density functional (TD DFT) method at B3PW91/6-31G(d) level. The electronic energies are calculated with the accurate model chemistry method at G3(QCI) level of theory and the ΔfHmΘ (0 K), ΔfHmΘ (298.15 K) and ΔfGmΘ (298.15 K) values are predicted. The heat capacities Cp,mΘ(T) as a function of temperature within 298.15-2000 K are fitted into analytical equations. The thermodynamic functions at higher temperatures are determined classically by using these equations. Most of the results obtained in this work are consistent with the available experiments.

[1]  M. Inghram,et al.  Thermodynamic study of SiC utilizing a mass spectrometer , 1958 .

[2]  J. Drowart,et al.  Mass Spectrometric Study of the Systems Boron—Carbon and Boron—Carbon—Silicon , 1964 .

[3]  W. Weltner,et al.  Spectroscopy of Silicon Carbide and Silicon Vapors Trapped in Neon and Argon Matrices at 4° and 20°K , 1964 .

[4]  C. Bender,et al.  Bending Frequency of the C3 Molecule , 1972 .

[5]  G. A. Petersson,et al.  Complete basis set correlation energies. I. The asymptotic convergence of pair natural orbital expansions , 1981 .

[6]  V. Bondybey Laser vaporization of silicon carbide. Lifetime and spectroscopy of silicon carbide (SiC2) , 1982 .

[7]  R. Hauge,et al.  Infrared matrix isolation spectrum of the disilicon carbide (Si2C) molecule , 1983 .

[8]  H. Schaefer,et al.  An energetically low‐lying silacyclopropyne isomer of SiC2 , 1984 .

[9]  R. Smalley,et al.  Visible spectroscopy of jet‐cooled SiC2: Geometry and electronic structure , 1984 .

[10]  R. Shepherd,et al.  FTIR matrix isolation study of carbon‐13 substituted SiC2 , 1985 .

[11]  G. Diercksen,et al.  The structure of Si2C and Si3 , 1985 .

[12]  H. Schaefer,et al.  Geometrical structure and vibrational frequencies of several electronic states of Si2C , 1985 .

[13]  G. Diercksen,et al.  The structure and spectrum of SiC2 , 1985 .

[14]  R. Bartlett,et al.  Isomers of Si2C2: an MBPT study , 1986 .

[15]  G. Diercksen,et al.  The calculated electronic excitation spectra of Si2C and Si3 , 1986 .

[16]  S. J. Cole,et al.  Electron correlation studies of SiC2 , 1986 .

[17]  G. A. Petersson,et al.  A complete basis set model chemistry. I. The total energies of closed‐shell atoms and hydrides of the first‐row elements , 1988 .

[18]  K. Lammertsma,et al.  Structures and Energies of Disilicon Dicarbide, C2Si2 , 1988 .

[19]  J. R. Flores,et al.  An ab initio study of Si2C protonation , 1988 .

[20]  R. Shepherd,et al.  Some implications from matrix studies for the structure and vibrational assignments of SiC2 , 1988 .

[21]  K. Minato,et al.  Structure of chemically vapour deposited silicon carbide for coated fuel particles , 1988 .

[22]  G. Diercksen,et al.  How reliable is the theoretical structure of SiC2 , 1988 .

[23]  L. Curtiss,et al.  Gaussian‐1 theory: A general procedure for prediction of molecular energies , 1989 .

[24]  K. Kawaguchi,et al.  Detection of a new circumstellar carbon chain molecule, C4Si , 1989 .

[25]  F. Zerbetto,et al.  Circumstellar carbon-chain molecules. Prediction of the infrared spectrum of SiC4 , 1989 .

[26]  Bond stretch isomerism in rhombic silicon carbide (C2Si2) , 1989 .

[27]  J. Cernicharo,et al.  Astonomical and laboratory detection of the SiC radical , 1989 .

[28]  Krishnan Raghavachari,et al.  Gaussian‐1 theory of molecular energies for second‐row compounds , 1990 .

[29]  J. D. Presilla-Márquez,et al.  Fourier transform far infrared spectroscopy of the ν’3 vibration of SiC2 in Ar at 10 K , 1990 .

[30]  H. Schaefer,et al.  Geometrical structures and vibrational frequencies of the energetically low‐lying isomers of SiC3 , 1990 .

[31]  R. Bartlett,et al.  Optimum structures and vibrational frequencies of (SIC)2 clusters , 1990 .

[32]  J. D. Presilla-Márquez,et al.  Fourier transform vibrational spectroscopy of Si2C in solid Ar , 1991 .

[33]  C. Rittby An ab initio study of the structure and infrared spectrum of Si2C , 1991 .

[34]  Krishnan Raghavachari,et al.  Gaussian-2 theory for molecular energies of first- and second-row compounds , 1991 .

[35]  G. A. Petersson,et al.  A complete basis set model chemistry. II. Open‐shell systems and the total energies of the first‐row atoms , 1991 .

[36]  E. Rohlfing,et al.  Laser‐induced fluorescence spectroscopy of jet‐cooled SiC2 , 1991 .

[37]  G. A. Petersson,et al.  A complete basis set model chemistry. III. The complete basis set‐quadratic configuration interaction family of methods , 1991 .

[38]  C. Rittby An abinitio study of the structure and infrared spectrum of Si3C , 1992 .

[39]  John E. Carpenter,et al.  Validity of additivity approximations used in GAUSSIAN‐2 theory , 1992 .

[40]  Evan E. Bolton,et al.  The silicon–carbon symmetric stretching fundamental ν1 of Si2C: Nonintuitive theoretical behavior , 1992 .

[41]  W. Graham,et al.  Vibrational spectra of tetra-atomic silicon-carbon clusters. I: Rhomboidal Si3C in Ar at 10 K , 1992 .

[42]  T. Tsuji,et al.  Silicon Chemistry in the Outer Envelope of IRC+10216--The Detailed Distribution of SiC2 (Nobeyama Millimeter Array) , 1992 .

[43]  W. Graham,et al.  Vibrational spectra of penta‐atomic silicon–carbon clusters. I. Linear SiC4 in Ar at 10 K , 1992 .

[44]  Importance of multicenter bonding in the structure of Si3C3 , 1993 .

[45]  L. Curtiss,et al.  A theoretical study of triatomic carbon-silicon mixed clusters. Relative energies and binding energies , 1994 .

[46]  J. D. Presilla-Márquez,et al.  Vibrational spectra of penta‐atomic silicon–carbon clusters. II. Linear Si2C3 , 1994 .

[47]  B. Engels,et al.  A comparative ab initio study of the Si2C4, Si3C3, and Si4C2 clusters , 1994 .

[48]  C. Rittby An ab initio study of the structure and infrared spectrum of Si2C3 , 1994 .

[49]  C. Rohlfing,et al.  SiC2: A molecular pinwheel , 1994 .

[50]  John A. Montgomery,et al.  A complete basis set model chemistry. IV. An improved atomic pair natural orbital method , 1994 .

[51]  C. Alcock,et al.  Thermodynamic Properties of Individual Substances , 1994 .

[52]  J. Simons,et al.  Vertical and Adiabatical Ionization Energies and Electron Affinities of New SinC and SinO (n=1-3) Molecules , 1994 .

[53]  B. Engels,et al.  Ab initio investigation of the stability of Si3C3 clusters and their structural and bonding features , 1994 .

[54]  T. Giesen,et al.  Characterization of silicon-carbon clusters by infrared laser spectroscopy: the nu 3(sigma u) band of linear Si2C3. , 1994, The Journal of chemical physics.

[55]  Stephen R. Langhoff,et al.  Quantum mechanical electronic structure calculations with chemical accuracy , 1995 .

[56]  P. Kolandaivel,et al.  Four energetically low lying states of SiC2 , 1995 .

[57]  A. Zdetsis,et al.  Theoretical study of the Si3C2 cluster , 1995 .

[58]  J. D. Presilla-Márquez,et al.  Vibrational spectra of tetra‐atomic silicon–carbon clusters. II. Si2C2 in Ar at 10 K , 1995 .

[59]  A. Nakajima,et al.  Photoelectron spectroscopy of silicon–carbon cluster anions (SinC−m) , 1995 .

[60]  L. Curtiss,et al.  Calculation of Accurate Bond Energies, Electron Affinities, and Ionization Energies , 1995 .

[61]  L. Curtiss,et al.  EVALUATION OF BOND ENERGIES TO CHEMICAL ACCURACY BY QUANTUM CHEMICAL TECHNIQUES , 1995 .

[62]  F. Langlais,et al.  Chemisorption on β-SiC and amorphous SiO2 during CVD of silicon carbide from the Si-C-H-Cl system. Correlations with the nucleation process , 1995 .

[63]  F. Langlais,et al.  Physicochemical properties of SiC-based ceramics deposited by low pressure chemical vapor deposition from CH3SiCl3H2 , 1995 .

[64]  IN-SITU FTIR EMISSION SPECTROSCOPY IN A TECHNOLOGICAL ENVIRONMENT: CHEMICAL VAPOUR INFILTRATION (CVI) OF SIC COMPOSITES , 1995 .

[65]  D R Yarkony,et al.  Modern electronic structure theory , 1995 .

[66]  F. Langlais,et al.  Experimental kinetic study of the chemical vapour deposition of SiC-based ceramics from CH3SiCl3H2 gas precursor , 1995 .

[67]  P. Sarre,et al.  Optical Absorption and Emission Bands of SiC2 in Carbon Stars , 1996 .

[68]  M. Petersilka,et al.  Excitation energies from time-dependent density-functional theory. , 1996 .

[69]  John A. Montgomery,et al.  A complete basis set model chemistry. V. Extensions to six or more heavy atoms , 1996 .

[70]  R. Ahlrichs,et al.  Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory , 1996 .

[71]  R. O. Jones,et al.  Structure and bonding in mixed silicon–carbon clusters and their anions , 1996 .

[72]  A. Zdetsis,et al.  Ab initio study of electronic, structural, and vibrational properties of the Si4C cluster , 1996 .

[73]  Leo Radom,et al.  Harmonic Vibrational Frequencies: An Evaluation of Hartree−Fock, Møller−Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors , 1996 .

[74]  M. W. Chase NIST–JANAF Thermochemical Tables for the Bromine Oxides , 1996 .

[75]  Vibrational spectra of penta‐atomic silicon–carbon clusters. III. Pentagonal Si3C2 , 1996 .

[76]  J. D. Presilla-Márquez,et al.  Vibrational spectra of hexa-atomic silicon-carbon clusters. I. Linear SiC4Si , 1997 .

[77]  W. D. Allen,et al.  Toward resolution of the silicon dicarbide (SiC2) saga: Ab initio excursions in the web of polytopism , 1997 .

[78]  Thermodynamic Study of Small Silicon Carbide Clusters with a Mass Spectrometer , 1997 .

[79]  A. Nakajima,et al.  Ab initio MO studies of neutral and anionic SiCn clusters (n=2-5) , 1997 .

[80]  L. Curtiss,et al.  Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation , 1997 .

[81]  L. Curtiss,et al.  Gaussian-3 (G3) theory for molecules containing first and second-row atoms , 1998 .

[82]  Zuhong Lu,et al.  High accuracy studies on the ground state and transition state of SiC2 , 1998 .

[83]  M. Allendorf,et al.  Understanding gas-phase reactions in the thermal CVD of hard coatings using computational methods , 1998 .

[84]  J. Robles,et al.  Properties of silicon-carbon mixed clusters: A systematic abinitio study , 1998 .

[85]  A. Apponi,et al.  A second rhomboidal isomer of SiC3 , 1999 .

[86]  Krishnan Raghavachari,et al.  Gaussian-3 theory using reduced Mo/ller-Plesset order , 1999 .

[87]  B. Jursic Energetic and structural properties of silicon dicarbides calculated with complete basis set and hybrid density functional theory methods , 1999 .

[88]  G. A. Petersson,et al.  A complete basis set model chemistry. VI. Use of density functional geometries and frequencies , 1999 .

[89]  A. Apponi,et al.  The rotational spectrum of rhomboidal SiC3 , 1999 .

[90]  A. Apponi,et al.  Rhomboidal SiC 3 , 1999 .

[91]  Krishnan Raghavachari,et al.  GAUSSIAN-3 THEORY USING DENSITY FUNCTIONAL GEOMETRIES AND ZERO-POINT ENERGIES , 1999 .

[92]  P. Botschwina,et al.  Structures of the linear silicon carbides SiC4 and SiC6: Isotopic substitution and Ab Initio theory , 2000 .

[93]  Wei Jun,et al.  Systematic Comparison of Geometry Optimization on Inorganic Molecules , 2000 .

[94]  Energetics and stability of small SimCn clusters: AM1 and PM3 calculations , 2000 .

[95]  Wei Jun,et al.  High-level Ab Initio Energy Divergences between Theoretical Optimized and Experimental Geometries , 2000 .

[96]  Single-reference M ? ller-Plesset Perturbation Extrapolation Technique in the Accurate Model Chemistry is Unreliable for Non-equilibrium Molecules , 2000 .

[97]  B. J. Oh,et al.  The effect of input gas ratio on the growth behavior of chemical vapor deposited SiC films , 2001 .

[98]  M. Gordon,et al.  Structure and Energetics of the Silicon Carbide Clusters SiC3 and Si2C2 , 2001 .

[99]  H. Schaefer,et al.  The global minimum structure of SiC3: The controversy continues , 2002 .

[100]  W. C. Lineberger,et al.  Photoelectron spectroscopy of Si2C3− and quantum chemistry of the linear Si2C3 cluster and its isomers , 2002 .

[101]  Ab initio investigation of structures and stability of SinCm clusters , 2003 .

[102]  W. D. Allen,et al.  Complete basis set limit studies of conventional and R12 correlation methods: The silicon dicarbide (SiC2) barrier to linearity , 2003 .

[103]  First principles studies on the structures, electronic states and stability of SinCm+ cationic clusters , 2003 .

[104]  R. Naslain Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview , 2004 .

[105]  A. Zdetsis,et al.  An MRD-CI study of the electronic spectrum of Si3C3 , 2004 .

[106]  A density functional study of the structures and energetics of small hetero-atomic silicon–carbon nanoclusters , 2004, physics/0408016.

[107]  Rongjun Liu,et al.  Structural analysis of chemical vapor deposited β-SiC coatings from CH3SiCl3–H2 gas precursor , 2004 .

[108]  J. Stanton,et al.  Laser spectroscopy of Si3C. , 2005, The Journal of chemical physics.

[109]  S. Carter,et al.  Anharmonic vibrational levels of the two cyclic isomers of SiC3. , 2006, The Journal of chemical physics.

[110]  Ab initio theoretical study of SiC microclusters , 2006 .

[111]  Kehe Su,et al.  Investigation of thermodynamic properties of gaseous SiC(X 3Π and a 1Σ) with accurate model chemistry calculations , 2008 .