Motion Estimation with Quadtree Splines

This paper presents a motion estimation algorithm based on a new multiresolution representation, the quadtree spline. This representation describes the motion field as a collection of smoothly connected patches of varying size, where the patch size is automatically adapted to the complexity of the underlying motion. The topology of the patches is determined by a quadtree data structure, and both split and merge techniques are developed for estimating this spatial subdivision. The quadtree spline is implemented using another novel representation, the adaptive hierarchical basis spline, and combines the advantages of adaptively-sized correlation windows with the speedups obtained with hierarchical basis preconditioners. Results are presented on some standard motion sequences.

[1]  G. Wahba,et al.  A Correspondence Between Bayesian Estimation on Stochastic Processes and Smoothing by Splines , 1970 .

[2]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[3]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[4]  Martin A. Fischler,et al.  Computational Stereo , 1982, CSUR.

[5]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[6]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[7]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[8]  B. D. Lucas Generalized image matching by the method of differences , 1985 .

[9]  Demetri Terzopoulos,et al.  Image Analysis Using Multigrid Relaxation Methods , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Ellen C Hildreth,et al.  Computing the velocity field along contours , 1986, Workshop on Motion.

[11]  Harry Yserentant,et al.  On the multi-level splitting of finite element spaces , 1986 .

[12]  Hans-Hellmut Nagel,et al.  On the Estimation of Optical Flow: Relations between Different Approaches and Some New Results , 1987, Artif. Intell..

[13]  Tomaso Poggio,et al.  Probabilistic Solution of Ill-Posed Problems in Computational Vision , 1987 .

[14]  David J. Heeger,et al.  Optical flow from spatialtemporal filters , 1987 .

[15]  L. Quam Hierarchical warp stereo , 1987 .

[16]  Wilfried Enkelmann,et al.  Investigations of multigrid algorithms for the estimation of optical flow fields in image sequences , 1988, Comput. Vis. Graph. Image Process..

[17]  Michael A. Gennert,et al.  Brightness-based Stereo Matching , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[18]  Jake K. Aggarwal,et al.  On the computation of motion from sequences of images-A review , 1988, Proc. IEEE.

[19]  Jake K. Aggarwal,et al.  Structure from stereo-a review , 1989, IEEE Trans. Syst. Man Cybern..

[20]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[21]  D. Geiger,et al.  Mean field theory for surface reconstruction , 1989 .

[22]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[23]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Rama Chellappa,et al.  Pyramid implementation of optimal-step conjugate-search algorithms for some low-level vision problems , 1989, IEEE Trans. Syst. Man Cybern..

[25]  Ajit Singh,et al.  An estimation-theoretic framework for image-flow computation , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[26]  Richard Szeliski,et al.  Fast Surface Interpolation Using Hierarchical Basis Functions , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Richard Szeliski,et al.  Fast shape from shading , 1990, CVGIP Image Underst..

[28]  Matching 3-D Smooth Surfaces with their 2-D Projections using 3-D Distance Maps , 1991, Geometric Reasoning for Perception and Action.

[29]  Federico Girosi,et al.  Parallel and Deterministic Algorithms from MRFs: Surface Reconstruction , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Petros Maragos,et al.  Motion displacement estimation using an affine model for image matching , 1991 .

[31]  James M. Rehg,et al.  Visual tracking with deformation models , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[32]  Edward H. Adelson,et al.  Probability distributions of optical flow , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[33]  T. M. Chin,et al.  An Estimation Theoretic Perspective on Image Processing and the Calculation of Optical Flow , 1992 .

[34]  P. Anandan,et al.  Hierarchical Model-Based Motion Estimation , 1992, ECCV.

[35]  Lisa M. Brown,et al.  A survey of image registration techniques , 1992, CSUR.

[36]  Michal Irani,et al.  Detecting and Tracking Multiple Moving Objects Using Temporal Integration , 1992, ECCV.

[37]  Michael J. Black,et al.  A framework for the robust estimation of optical flow , 1993, 1993 (4th) International Conference on Computer Vision.

[38]  Edward H. Adelson,et al.  Layered representation for motion analysis , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[39]  Takeo Kanade,et al.  A Multiple-Baseline Stereo , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Michael J. Black,et al.  Mixture models for optical flow computation , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[41]  Yoshiaki Shirai,et al.  Segmentation and 2D motion estimation by region fragments , 1993, 1993 (4th) International Conference on Computer Vision.

[42]  Shahriar Negahdaripour,et al.  A generalized brightness change model for computing optical flow , 1993, 1993 (4th) International Conference on Computer Vision.

[43]  Michael J. Black,et al.  The outlier process: unifying line processes and robust statistics , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[44]  Richard Szeliski,et al.  Hierarchical spline-based image registration , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[45]  Alex Pentland,et al.  Interpolation Using Wavelet Bases , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[47]  Hans-Hellmut Nagel,et al.  Optical Flow Estimation: Advances and Comparisons , 1994, ECCV.

[48]  Josef Kittler,et al.  Estimation of complex multimodal motion: an approach based on robust statistics and Hough transform , 1994, Image and Vision Computing.

[49]  W. Clem Karl,et al.  Efficient multiscale regularization with applications to the computation of optical flow , 1994, IEEE Trans. Image Process..

[50]  Takeo Kanade,et al.  A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiment , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  P. Anandan,et al.  Adaptive-complexity registration of images , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[52]  Richard Szeliski,et al.  A parallel feature tracker for extended image sequences , 1995, Proceedings of International Symposium on Computer Vision - ISCV.