Ultrafast Exciton Dynamics and Two‐Photon Pumped Lasing from ZnSe Nanowires

The carrier recombination dynamics in ZnSe nanowires (NWs) remain poorly understood despite more than a decade of research since their inception in 2001. Herein, through a comprehensive pump fluence‐ and temperature‐dependent two‐photon excitation (TPE) study, a clear picture of the carrier relaxation pathways, intrinsic lifetimes, exciton oscillator strengths, and exciton‐phonon interactions is presented for this NW system. Contrary to a common perception that the higher pump intensities needed to achieve two‐photon‐excited photoluminescence correspond to a higher exciton density threshold (nth) for two‐photon pumped lasing, it is found that a much lower nth is needed to achieve lasing with TPE compared to single‐photon excitation (SPE) of the same ZnSe NWs. This measurement is further supported by the greatly enhanced lasing action photostability characteristics of the ZnSe NWs under TPE. These findings have significant implications on the design and the tailoring of the optoelectronic properties of nanowire lasers.

[1]  C. Ning,et al.  Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate. , 2010, ACS nano.

[2]  D. Vanmaekelbergh,et al.  Polarization, microscopic origin, and mode structure of luminescence and lasing from single ZnO nanowires. , 2009, Nano letters.

[3]  C. Ning,et al.  Quaternary alloy semiconductor nanobelts with bandgap spanning the entire visible spectrum. , 2009, Journal of the American Chemical Society.

[4]  Zhong Lin Wang,et al.  Low-threshold two-photon pumped ZnO nanowire lasers. , 2009, Optics express.

[5]  Bin Zhang,et al.  Size-dependent waveguide dispersion in nanowire optical cavities: slowed light and dispersionless guiding. , 2009, Nano letters.

[6]  Song Jin,et al.  Dislocation-Driven Nanowire Growth and Eshelby Twist , 2008, Science.

[7]  A. Pawlis,et al.  Lasing of donor-bound excitons in ZnSe microdisks , 2007, 0712.1048.

[8]  P. Mulvaney,et al.  From Cd-rich to se-rich--the manipulation of CdSe nanocrystal surface stoichiometry. , 2007, Journal of the American Chemical Society.

[9]  U. Philipose,et al.  Origin of the red luminescence band in photoluminescence spectra of ZnSe nanowires , 2007 .

[10]  K. Kavanagh,et al.  Structure and photoluminescence of ZnSe nanostructures fabricated by vapor phase growth , 2007 .

[11]  K. Kavanagh,et al.  Enhancement of band edge luminescence in ZnSe nanowires , 2006 .

[12]  S. Hark,et al.  Localized cathodoluminescence of individual ZnSe nanorods , 2006 .

[13]  Y. F. Chan,et al.  The Size‐Dependent Growth Direction of ZnSe Nanowires , 2006 .

[14]  Xitian Zhang,et al.  Routes to Grow Well‐Aligned Arrays of ZnSe Nanowires and Nanorods , 2005, Advanced materials.

[15]  L. Deych Effects of spatial nonuniformity on laser dynamics. , 2005, Physical review letters.

[16]  P. Eklund,et al.  Raman Scattering from Surface Phonons in Rectangular Cross-sectional w-ZnS Nanowires , 2004 .

[17]  P. Eklund,et al.  Optical Properties of Rectangular Cross-sectional ZnS Nanowires , 2004 .

[18]  J. Nedeljković,et al.  Photoenhancement of Luminescence in Colloidal CdSe Quantum Dot Solutions , 2003 .

[19]  Y. Bando,et al.  Preparation and photoluminescence of single-crystal zinc selenide nanowires , 2003 .

[20]  G. Lu,et al.  Green-light-emitting ZnSe nanowires fabricated via vapor phase growth , 2003 .

[21]  Charles M. Lieber,et al.  Single-nanowire electrically driven lasers , 2003, Nature.

[22]  K. Vahala,et al.  Ultralow-threshold Raman laser using a spherical dielectric microcavity , 2002, Nature.

[23]  G. Bunea,et al.  Time-resolved photoluminescence studies of free and donor-bound exciton in GaN grown by hydride vapor phase epitaxy , 1999 .

[24]  B. A. Foreman,et al.  One- and two-photon-excited time-resolved photoluminescence investigations of bulk and surface recombination dynamics in ZnSe , 1998 .

[25]  J. L. House,et al.  Ultrafast carrier dynamics and intervalley scattering in ZnSe , 1997 .

[26]  Henneberger,et al.  Role of biexcitons in the stimulated emission of wide-gap II-VI quantum wells. , 1995, Physical review letters.

[27]  Grifoni,et al.  Band-edge dynamics and trapping in ZnSe crystals. , 1995, Physical review. B, Condensed matter.

[28]  Gerald S. Buller,et al.  Photoluminescence decay measurements of n‐ and p‐type doped ZnSe grown by molecular beam epitaxy , 1994 .

[29]  Wilson Sibbett,et al.  Decay time of the blue luminescence in ZnSe at room temperature , 1993 .

[30]  Luo,et al.  Excitonic gain and laser emission in ZnSe-based quantum wells. , 1992, Physical review letters.

[31]  William R. Patterson,et al.  Blue‐green injection laser diodes in (Zn,Cd)Se/ZnSe quantum wells , 1991 .

[32]  Taguchi,et al.  Optical properties of ZnSe. , 1991, Physical review. B, Condensed matter.

[33]  M. Cardona,et al.  Interband critical points of GaAs and their temperature dependence. , 1987, Physical review. B, Condensed matter.

[34]  Foxon,et al.  Giant oscillator strength of free excitons in GaAs. , 1987, Physical review. B, Condensed matter.

[35]  J. Xue,et al.  Optical Properties of the Ideep1 Bound Exciton in ZnSe , 1983 .

[36]  M. Yamaguchi,et al.  Blue electroluminescence from ZnSe diodes , 1977 .

[37]  D. Bimberg,et al.  Thermal Dissociation of Excitons Bounds to Neutral Acceptors in High-Purity GaAs , 1971 .

[38]  D. G. Thomas,et al.  Kinetics of Radiative Recombination at Randomly Distributed Donors and Acceptors , 1965 .

[39]  D. Marple,et al.  Refractive Index of ZnSe, ZnTe, and CdTe , 1964 .