Parallel Adaptive Boundary Layer Meshing for CFD Analysis

This paper describes a parallel procedure for anisotropic mesh adaptation with boundary layers for use in scalable CFD simulations. The parallel mesh adaptation algorithm operates with local mesh modification operations developed for both unstructured and boundary layer parts of the mesh. The adaptive approach maintains layered elements near the viscous walls and accounts for the mesh modification operations that are carried out in parallel on a distributed mesh. In the process mesh relationships and approximations with respect to curved complex 3D geometries of interest are properly maintained. The parallel mesh adaptation procedures are applied to two problems: a heat transfer manifold and a scramjet engine.

[1]  Timothy J. Tautges,et al.  An Interoperable, Data-Structure-Neutral Component for Mesh Query and Manipulation , 2010, ACM Trans. Math. Softw..

[2]  Mark S. Shephard,et al.  Accounting for curved domains in mesh adaptation , 2003 .

[3]  Onkar Sahni,et al.  Neighborhood communication paradigm to increase scalability in large-scale dynamic scientific applications , 2012, Parallel Comput..

[4]  Onkar Sahni,et al.  Scalable implicit finite element solver for massively parallel processing with demonstration to 160K cores , 2009, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis.

[5]  Carlo L. Bottasso,et al.  A Procedure for Tetrahedral Boundary Layer Mesh Generation , 2002, Engineering with Computers.

[6]  Christof Vömel,et al.  ScaLAPACK's MRRR algorithm , 2010, TOMS.

[7]  C.R.E. de Oliveira,et al.  Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations , 2001 .

[8]  Mark S. Shephard,et al.  Boundary layer mesh generation for viscous flow simulations , 2000 .

[9]  Yannis Kallinderis,et al.  Parallel adaptation of general three-dimensional hybrid meshes , 2010, J. Comput. Phys..

[10]  Mark S. Shephard,et al.  Efficient distributed mesh data structure for parallel automated adaptive analysis , 2006, Engineering with Computers.

[11]  K. Bathe,et al.  A mesh adaptivity procedure for CFD and fluid-structure interactions , 2009 .

[12]  A. Liu,et al.  On the shape of tetrahedra from bisection , 1994 .

[13]  Pascal Frey,et al.  Anisotropic mesh adaptation for CFD computations , 2005 .

[14]  M. Shephard,et al.  Curved boundary layer meshing for adaptive viscous flow simulations , 2010 .

[15]  Onkar Sahni,et al.  Adaptive boundary layer meshing for viscous flow simulations , 2008, Engineering with Computers.

[16]  Mark S. Shephard,et al.  Parallel refinement and coarsening of tetrahedral meshes , 1999 .

[17]  Tommy Minyard,et al.  Adaptive hybrid grid methods , 2000 .

[18]  J. Remacle,et al.  Anisotropic adaptive simulation of transient flows using discontinuous Galerkin methods , 2005 .

[19]  Xiaolin Li,et al.  Enabling scalable parallel implementations of structured adaptive mesh refinement applications , 2007, The Journal of Supercomputing.

[20]  Mark S. Shephard,et al.  Mesh modification procedures for general 3d non-manifold domains , 2003 .

[21]  Onkar Sahni,et al.  Controlling Unstructured Mesh Partitions for Massively Parallel Simulations , 2010, SIAM J. Sci. Comput..

[22]  Carlo L. Bottasso,et al.  Anisotropic mesh adaption by metric‐driven optimization , 2004 .

[23]  Mark S. Shephard,et al.  Bringing HPC to Engineering Innovation , 2013, Computing in Science & Engineering.

[24]  Adrien Loseille,et al.  Boundary Layer Mesh Generation and Adaptivity , 2011 .

[25]  J. Remacle,et al.  A mesh adaptation framework for dealing with large deforming meshes , 2010 .

[26]  David R. Owen,et al.  Performance comparisons of tree‐based and cell‐based contact detection algorithms , 2007 .

[27]  Frédéric Alauzet,et al.  Parallel anisotropic 3D mesh adaptation by mesh modification , 2006, Engineering with Computers.

[28]  Nigel P. Weatherill,et al.  A method for time accurate turbulent compressible fluid flow simulation with moving boundary components employing local remeshing , 2007 .

[29]  Charles A. Taylor,et al.  Efficient anisotropic adaptive discretization of the cardiovascular system , 2006 .

[30]  Mark S. Shephard,et al.  3D anisotropic mesh adaptation by mesh modification , 2005 .

[31]  Timothy J. Tautges,et al.  Toward interoperable mesh, geometry and field components for PDE simulation development , 2007, Engineering with Computers.

[32]  Onkar Sahni,et al.  Cardiovascular flow simulation at extreme scale , 2010 .

[33]  Kenneth E. Jansen,et al.  A stabilized finite element method for the incompressible Navier–Stokes equations using a hierarchical basis , 2001 .

[34]  Yannis Kallinderis,et al.  A dynamic adaptation scheme for general 3-D hybrid meshes , 2005 .

[35]  Christopher C. Pain,et al.  A new computational framework for multi‐scale ocean modelling based on adapting unstructured meshes , 2008 .

[36]  Can C. Özturan,et al.  Parallel Automatic Adaptive Analysis , 1997, Parallel Comput..

[37]  Christian B Allen,et al.  48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition , 2010 .

[38]  Mark S. Shephard,et al.  PARALLEL MESH GENERATION AND ADAPTATION FOR CAD GEOMETRIES , 2011 .