The Cauchy Two-Matrix Model, C-Toda Lattice and CKP Hierarchy

This paper mainly talks about the Cauchy two-matrix model and its corresponding integrable hierarchy with the help of orthogonal polynomial theory and Toda-type equations. Starting from the symmetric reduction in Cauchy biorthogonal polynomials, we derive the Toda equation of CKP type (or the C-Toda lattice) as well as its Lax pair by introducing time flows. Then, matrix integral solutions to the C-Toda lattice are extended to give solutions to the CKP hierarchy which reveals the time-dependent partition function of the Cauchy two-matrix model is nothing but the $$\tau $$τ-function of the CKP hierarchy. At last, the connection between the Cauchy two-matrix model and Bures ensemble is established from the point of view of integrable systems.

[1]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[2]  D. Gross,et al.  Nonperturbative two-dimensional quantum gravity. , 1990, Physical review letters.

[3]  L. M.,et al.  A Method of Integration over Matrix Variables , 2005 .

[4]  A. Morozov,et al.  Generalized matrix models as conformal field theories Discrete case , 1991 .

[5]  P. Moerbeke,et al.  The Pfaff lattice and skew-orthogonal polynomials , 1999, solv-int/9903005.

[6]  M. Jimbo,et al.  TRANSFORMATION GROUPS FOR SOLITON EQUATIONS , 1982 .

[7]  B. Eynard,et al.  Random matrices. , 2015, 1510.04430.

[8]  P. Moerbeke,et al.  Matrix integrals, Toda symmetries, Virasoro constraints, and orthogonal polynomials , 1995, solv-int/9706010.

[9]  J. Szmigielski,et al.  The Cauchy Two-Matrix Model , 2008, 0804.0873.

[10]  P. Forrester,et al.  Relating the Bures Measure to the Cauchy Two-Matrix Model , 2014, 1410.6883.

[11]  The Spectrum of coupled random matrices , 1999 .

[12]  J. Harnad,et al.  Semiclassical Orthogonal Polynomials, Matrix Models and Isomonodromic Tau Functions , 2006 .

[13]  A. Orlov,et al.  Matrix models of two-dimensional gravity and Toda theory , 1991 .

[14]  P. Moerbeke,et al.  Random Matrices, Vertex Operators and the Virasoro-algebra , 1995 .

[15]  Hans Lundmark,et al.  Degasperis-Procesi peakons and the discrete cubic string , 2005, nlin/0503036.

[16]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[17]  Marco Bertola,et al.  Cauchy biorthogonal polynomials , 2009, J. Approx. Theory.

[18]  M. Jimbo,et al.  TRANSFORMATION GROUPS FOR SOLITON EQUATIONS. 6. KP HIERARCHIES OF ORTHOGONAL AND SYMPLECTIC TYPE , 1981 .

[19]  A. Alexandrov,et al.  Free fermions and tau-functions , 2012, 1212.6049.

[20]  J. Harnad,et al.  Partition functions for matrix models and isomonodromic tau functions , 2003 .

[21]  CKP Hierarchy, Bosonic Tau Function and Bosonization Formulae , 2011, 1102.0087.

[22]  Na Wang,et al.  Quantum Torus Algebras and B(C)-Type Toda Systems , 2017, Journal of nonlinear science.

[23]  Shi-Hao Li,et al.  The partition function of the Bures ensemble as the τ-function of BKP and DKP hierarchies: continuous and discrete , 2017 .

[24]  Fermionic construction of partition functions for two-matrix models and perturbative Schur function expansions , 2005, math-ph/0512056.

[25]  The 2+1 dimensional Kaup-Kuperschmidt equation with self-consistent sources and its exact solutions , 2010 .

[26]  J. Szmigielski,et al.  Peakons and Cauchy Biorthogonal Polynomials , 2007, 0711.4082.

[27]  J. Szmigielski,et al.  Cauchy–Laguerre Two-Matrix Model and the Meijer-G Random Point Field , 2012, 1211.5369.

[28]  Recursion Relations for Unitary Integrals, Combinatorics and the Toeplitz Lattice , 2002, math-ph/0201063.

[29]  M. Jimbo,et al.  Solitons and Infinite Dimensional Lie Algebras , 1983 .

[30]  Masaki Kashiwara,et al.  KP Hierarchies of Orthogonal and Symplectic Type–Transformation Groups for Soliton Equations VI– , 1981 .

[31]  Edouard Brézin,et al.  Exactly Solvable Field Theories of Closed Strings , 1990 .

[32]  X. Hu,et al.  Degasperis-Procesi peakons and finite Toda lattice of CKP type: isospectral deformations of tau-functions related to Cauchy kernel , 2017 .

[33]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.