Measurement-device-independent quantum key distribution with uncharacterized coherent sources

Measurement-device-independent quantum key distribution (MDI-QKD) is proposed to close all possible side channel detector attacks. The security of the original proposal relies on the assumption that the legitimate users can characterize their sources exactly, which might not be satisfied in practice. Later, some MDI-QKD protocols with uncharacterized qubit sources are proposed to remove the assumption that legitimate users must characterize their encoding states. Here we propose a MDI-QKD with uncharacterized coherent sources. The assumption is that legitimate users only ensure that sources, for encoding, are coherent sources (can be expressed as a mixture of Fock states), while the accuracy of the encoding operations and the intensity of the coherent sources cannot be characterized exactly by them. Based on this assumption, we derived the formulas of the security bounds for it under collective attacks, and simulation results of the security bounds are also presented by employing parameters of current QKD technology. It shows that the lower bound of performance can cover long distances.

[1]  J. F. Dynes,et al.  Overcoming the rate-distance barrier of quantum key distribution without using quantum repeaters , 2018 .

[2]  V. Scarani,et al.  Device-independent security of quantum cryptography against collective attacks. , 2007, Physical review letters.

[3]  Xiongfeng Ma,et al.  Improved data post-processing in quantum key distribution and application to loss thresholds in device independent QKD , 2011, Quantum Inf. Comput..

[4]  Zong-Wen Yu,et al.  Twin-field quantum key distribution with large misalignment error , 2018, Physical Review A.

[5]  H. Weinfurter,et al.  Entanglement-based quantum communication over 144km , 2007 .

[6]  Michele Mosca,et al.  Generalized Self-testing and the Security of the 6-State Protocol , 2010, TQC.

[7]  R. Renner,et al.  Device-Independent Quantum Key Distribution with Local Bell Test , 2012, 1208.0023.

[8]  Mohsen Razavi,et al.  Multiple-Access Quantum Key Distribution Networks , 2011, IEEE Transactions on Communications.

[9]  Vadim Makarov,et al.  Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols , 2007, Quantum Inf. Comput..

[10]  V. Buzek,et al.  Universal Algorithm for Optimal Estimation of Quantum States from Finite Ensembles via Realizable Ge , 1997, quant-ph/9707028.

[11]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[12]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[13]  Xiang-Bin Wang A decoy-state protocol for quantum cryptography with 4 intensities of coherent states , 2008 .

[14]  Wei Chen,et al.  Measurement-device-independent quantum key distribution with uncharacterized qubit sources , 2013 .

[15]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[16]  J. Skaar,et al.  Hacking commercial quantum cryptography systems by tailored bright illumination , 2010, 1008.4593.

[17]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[18]  Biham,et al.  Quantum cryptographic network based on quantum memories. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[19]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[20]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[21]  K. Tamaki,et al.  Security proof for quantum-key-distribution systems with threshold detectors , 2008, 0803.4226.

[22]  Normand J. Beaudry,et al.  Squashing models for optical measurements in quantum communication. , 2008, Physical review letters.

[23]  Shuang Wang,et al.  Phase-Reference-Free Experiment of Measurement-Device-Independent Quantum Key Distribution. , 2015, Physical review letters.

[24]  Xiongfeng Ma,et al.  Decoy state quantum key distribution. , 2004, Physical review letters.

[25]  Imre Csiszár,et al.  Broadcast channels with confidential messages , 1978, IEEE Trans. Inf. Theory.

[26]  T. F. D. Silva,et al.  Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits , 2012, 1207.6345.

[27]  Yongmei Huang,et al.  Satellite-to-ground quantum key distribution , 2017, Nature.

[28]  F. Bussières,et al.  Secure Quantum Key Distribution over 421 km of Optical Fiber. , 2018, Physical review letters.

[29]  John Preskill,et al.  Security of quantum key distribution using weak coherent states with nonrandom phases , 2007, Quantum Inf. Comput..

[30]  Robert Prevedel,et al.  High-fidelity entanglement swapping with fully independent sources , 2008, 0809.3991.

[31]  H. Lo,et al.  Quantum key distribution with triggering parametric down-conversion sources , 2008, 0803.2543.

[32]  Masato Koashi,et al.  Simple security proof of quantum key distribution based on complementarity , 2009 .

[33]  Christian Kurtsiefer,et al.  Full-field implementation of a perfect eavesdropper on a quantum cryptography system. , 2010, Nature communications.

[34]  Li Qian,et al.  Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. , 2013, Physical review letters.

[35]  J. F. Dynes,et al.  Overcoming the rate–distance limit of quantum key distribution without quantum repeaters , 2018, Nature.

[36]  Xiongfeng Ma,et al.  Alternative schemes for measurement-device-independent quantum key distribution , 2012, 1204.4856.

[37]  N. Gisin,et al.  From Bell's theorem to secure quantum key distribution. , 2005, Physical review letters.

[38]  Yang Liu,et al.  Device-independent quantum random-number generation , 2018, Nature.

[39]  Jian-Wei Pan,et al.  Source attack of decoy-state quantum key distribution using phase information , 2013, 1304.2541.

[40]  M. Fejer,et al.  Experimental measurement-device-independent quantum key distribution. , 2012, Physical review letters.

[41]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[42]  H. Lo,et al.  Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw , 2011, 1111.3413.

[43]  Xiang‐Bin Wang,et al.  Beating the PNS attack in practical quantum cryptography , 2004 .

[44]  Hui Liu,et al.  Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber. , 2016, Physical review letters.

[45]  Hong-Yi Su,et al.  Improved measurement-device-independent quantum key distribution with uncharacterized qubits , 2017, 1706.02927.

[46]  Yi Zhao,et al.  Quantum key distribution with an unknown and untrusted source , 2008, 0802.2725.

[47]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[48]  Hua-Lei Yin,et al.  Measurement-Device-Independent Twin-Field Quantum Key Distribution , 2018, Scientific Reports.

[49]  Xiongfeng Ma,et al.  ar X iv : q ua ntp h / 05 12 08 0 v 2 1 1 A pr 2 00 6 TIMESHIFT ATTACK IN PRACTICAL QUANTUM , 2005 .

[50]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[51]  Xiongfeng Ma,et al.  Universally composable and customizable post-processing for practical quantum key distribution , 2011, Comput. Secur..

[52]  H. Lo,et al.  Practical decoy state for quantum key distribution (15 pages) , 2005 .

[53]  H. Lo,et al.  Practical Decoy State for Quantum Key Distribution , 2005, quant-ph/0503005.

[54]  Vadim Makarov,et al.  Erratum: Effects of detector efficiency mismatch on security of quantum cryptosystems [Phys. Rev. A74, 022313 (2006)] , 2008 .

[55]  Hoi-Kwong Lo Getting something out of nothing , 2005, Quantum Inf. Comput..

[56]  Christoph Simon,et al.  Long-Distance Entanglement Distribution with Single-Photon Sources , 2007, 0706.1924.

[57]  Xiongfeng Ma,et al.  Phase-Matching Quantum Key Distribution , 2018, Physical Review X.

[58]  Christine Chen,et al.  Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems , 2007, 0704.3253.

[59]  Won-Young Hwang Quantum key distribution with high loss: toward global secure communication. , 2003, Physical review letters.

[60]  H. Weinfurter,et al.  Free-Space distribution of entanglement and single photons over 144 km , 2006, quant-ph/0607182.

[61]  Neal Koblitz,et al.  Advances in Cryptology — CRYPTO ’96 , 2001, Lecture Notes in Computer Science.