On the performance of a high-order multiscale DG approach to LES at increasing Reynolds number

Abstract The variational multiscale (VMS) approach based on a high-order discontinuous Galerkin (DG) method is used to perform LES of the sub-critical flow past a circular cylinder at Reynolds 3 900, 20 000 and 140 000. The effect of the numerical flux function on the quality of the LES solutions is also studied in the context of very coarse discretizations of the TGV configuration at R e = 20 000 . The potential of using p-adaption in combination with DG-VMS is illustrated for the cylinder flow at R e = 140 000 by considering a non-uniform distribution of the polynomial degree based on a recently developed error estimation strategy [57]. The results from these tests demonstrate the robustness of the DG-VMS approach with increasing Reynolds number on a highly curved geometrical configuration.

[1]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[2]  C. J. Apelt,et al.  Measurements of Fluctuating Pressures and Forces on a Circular Cylinder in the Reynolds Number Range 104 to 2·5 × 105 , 1993 .

[3]  Spencer J. Sherwin,et al.  Modified Equation Analysis for the Discontinuous Galerkin Formulation , 2015 .

[4]  Charbel Farhat,et al.  A Variational Multiscale Method for the Large Eddy Simulation of Compressible Turbulent Flows on Unstructured Meshes - Application to vortex shedding , 2004 .

[5]  Yser Pierre,et al.  High-order Variational Multiscale model with an explicit filtering in a stabilised finite element method for LES/DES computations , 2016 .

[6]  Luca Bonaventura,et al.  Dynamic models for Large Eddy Simulation of compressible flows with a high order DG method , 2014, Computers & Fluids.

[7]  S. Collis,et al.  Monitoring unresolved scales in multiscale turbulence modeling , 2001 .

[8]  Alain Dervieux,et al.  Impact of dynamic subgrid-scale modeling in variational multiscale large-eddy simulation of bluff-body flows , 2014, Acta Mechanica.

[9]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[10]  S. Lee,et al.  Flow Control of Circular Cylinders with Longitudinal Grooved Surfaces , 2002 .

[11]  Thomas J. Hanratty,et al.  Velocity gradients at the wall for flow around a cylinder at Reynolds numbers from 5 × 103 to 105 , 1969, Journal of Fluid Mechanics.

[12]  Ivar S. Ertesvåg,et al.  Large-Eddy Simulation of the Flow Over a Circular Cylinder at Reynolds Number 2 × 104 , 2014 .

[13]  Spencer J. Sherwin,et al.  On the eddy-resolving capability of high-order discontinuous Galerkin approaches to implicit LES / under-resolved DNS of Euler turbulence , 2017, J. Comput. Phys..

[14]  Christophe Bailly,et al.  High-Order Variational Multiscale Model in Finite Elements Applied to the LEISA-2 Configuration , 2018, AIAA Journal.

[15]  Alain Dervieux,et al.  Classical and variational multiscale LES of the flow around a circular cylinder on unstructured grids , 2010 .

[16]  Steven J. Hulshoff,et al.  A modal-based multiscale method for large eddy simulation , 2007, J. Comput. Phys..

[17]  C. Norberg Fluctuating lift on a circular cylinder: review and new measurements , 2003 .

[18]  E. Lamballais,et al.  Evaluation of a high-order discontinuous Galerkin method for the DNS of turbulent flows , 2014 .

[19]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[20]  Volker John,et al.  A Finite Element Variational Multiscale Method for the Navier-Stokes Equations , 2005, SIAM J. Sci. Comput..

[21]  Pierre Sagaut,et al.  An entropy-variable-based VMS/GLS method for the simulation of compressible flows on unstructured grids , 2006 .

[22]  F. Toschi,et al.  Shear-improved Smagorinsky model for large-eddy simulation of wall-bounded turbulent flows , 2006, Journal of Fluid Mechanics.

[23]  E. Lamballais,et al.  Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900 , 2008 .

[24]  T. Hughes,et al.  The variational multiscale formulation of LES: Channel flow at Rer = 590 , 2002 .

[25]  Charbel Farhat,et al.  A dynamic variational multiscale method for large eddy simulations on unstructured meshes , 2006 .

[26]  Volker John,et al.  A Review of Variational Multiscale Methods for the Simulation of Turbulent Incompressible Flows , 2015 .

[27]  Sylvain Laizet,et al.  Numerical dissipation vs. subgrid-scale modelling for large eddy simulation , 2017, J. Comput. Phys..

[28]  J. Vassilicos,et al.  Implicit/Explicit Spectral Viscosity and Large-Scale SGS Effects , 2019, Direct and Large-Eddy Simulation XI.

[29]  F. Nicoud,et al.  Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor , 1999 .

[31]  Thomas J. R. Hughes,et al.  Sensitivity of the scale partition for variational multiscale large-eddy simulation of channel flow , 2004 .

[32]  J. Chapelier,et al.  Evaluation of the Spectral Element Dynamic Model for Large-Eddy Simulation on Unstructured, Deformed Meshes , 2018 .

[33]  Claus-Dieter Munz,et al.  On the Influence of Polynomial De-aliasing on Subgrid Scale Models , 2016 .

[34]  Matthias Ihme,et al.  Entropy-bounded discontinuous Galerkin scheme for Euler equations , 2014, J. Comput. Phys..

[35]  Bernardo Cockburn Discontinuous Galerkin methods , 2003 .

[36]  Alain Dervieux,et al.  Variational multiscale large-eddy simulations of the flow past a circular cylinder: Reynolds number effects , 2011 .

[37]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[38]  T. Hughes,et al.  Large Eddy Simulation and the variational multiscale method , 2000 .

[39]  M. Breuer A CHALLENGING TEST CASE FOR LARGE EDDY SIMULATION: HIGH REYNOLDS NUMBER CIRCULAR CYLINDER FLOW , 2000, Proceeding of First Symposium on Turbulence and Shear Flow Phenomena.

[40]  Thomas J. R. Hughes,et al.  The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence , 2001 .

[41]  Spencer J. Sherwin,et al.  Spatial eigensolution analysis of discontinuous Galerkin schemes with practical insights for under-resolved computations and implicit LES , 2017, Computers & Fluids.

[42]  M. Lesieur,et al.  Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate , 1996, Journal of Fluid Mechanics.

[43]  Vincent Couaillier,et al.  On the use of a high-order discontinuous Galerkin method for DNS and LES of wall-bounded turbulence , 2017, Computers & Fluids.

[44]  E. Salvatici,et al.  Large eddy simulations of the flow around a circular cylinder: effects of grid resolution and subgrid scale modeling , 2003 .

[45]  S. J. Karabelas,et al.  Large Eddy Simulation of high-Reynolds number flow past a rotating cylinder , 2010 .

[46]  Frédéric Coquel,et al.  A comparison of refinement indicators for p-adaptive simulations of steady and unsteady flows using discontinuous Galerkin methods , 2019, J. Comput. Phys..

[47]  A. Dervieux,et al.  Hybrid Versus Pure-LES Models Comparison for Subcritical Cylinder Flows , 2019, Direct and Large-Eddy Simulation XI.

[48]  B. Cantwell,et al.  An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder , 1983, Journal of Fluid Mechanics.

[49]  A. Oliva,et al.  Low-frequency unsteadiness in the vortex formation region of a circular cylinder , 2013 .

[50]  S. Scott Collis,et al.  The DG/VMS Method for Unified Turbulence Simulation , 2002 .

[51]  Thor Gjesdal,et al.  Variational multiscale turbulence modelling in a high order spectral element method , 2009, J. Comput. Phys..

[52]  Esteban Ferrer,et al.  An interior penalty stabilised incompressible discontinuous Galerkin-Fourier solver for implicit large eddy simulations , 2017, J. Comput. Phys..

[53]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[54]  W. Rodi,et al.  Large-Eddy Simulation of Turbulent Flow through a Straight Square Duct and a 180° Bend , 1994 .

[55]  M. de la Llave Plata,et al.  Development of a multiscale LES model in the context of a modal discontinuous Galerkin method , 2016 .

[56]  Thomas J. R. Hughes,et al.  Large eddy simulation of turbulent channel flows by the variational multiscale method , 2001 .

[57]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[58]  Volker Gravemeier,et al.  Variational Multiscale Large Eddy Simulation of Turbulent Flow in a Diffuser , 2007 .

[59]  Volker Gravemeier,et al.  Recent Developments in Variational Multiscale Methods for Large-Eddy Simulation of Turbulent Flow , 2018 .

[60]  P. Tesini,et al.  On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations , 2012, J. Comput. Phys..

[61]  Ivar S. Ertesvåg,et al.  Large-Eddy Simulation of the Flow Over a Circular Cylinder at Reynolds Number 3900 Using the OpenFOAM Toolbox , 2012 .

[62]  Ralf Hartmann,et al.  An optimal order interior penalty discontinuous Galerkin discretization of the compressible Navier-Stokes equations , 2008, J. Comput. Phys..

[63]  E. A. Munts,et al.  Wall‐stress boundary conditions for variational‐multiscale LES , 2011 .

[64]  M. Breuer LARGE EDDY SIMULATION OF THE SUBCRITICAL FLOW PAST A CIRCULAR CYLINDER: NUMERICAL AND MODELING ASPECTS , 1998 .

[65]  U. Piomelli,et al.  Large-eddy simulation of transitional channel flow , 1991 .

[66]  L. D. Marini,et al.  Stabilization mechanisms in discontinuous Galerkin finite element methods , 2006 .