Volatility Components, Affine Restrictions, and Nonnormal Innovations

Here we assess the return fitting and option valuation performance of generalized autoregressive conditional heteroscedasticity (GARCH) models. We compare component versus GARCH(1, 1) models, affine versus nonaffine GARCH models, and conditionally normal versus nonnormal GED models. We find that nonaffine models dominate affine models in terms of both fitting returns and option valuation. For the affine models, we find strong evidence in favor of the component structure for both returns and options; for the nonaffine models, the evidence is less convincing in option valuation. The evidence in favor of the nonnormal GED models is strong when fitting daily returns, but not when valuing options.

[1]  E. Ghysels,et al.  A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation , 2000 .

[2]  David S. Bates Post-'87 crash fears in the S&P 500 futures option market , 2000 .

[3]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[4]  John M. Olin,et al.  A Closed-Form GARCH Option Pricing Model , 1997 .

[5]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options , 1998 .

[6]  Peter H. Ritchken,et al.  An empirical comparison of GARCH option pricing models , 2006 .

[7]  Bjørn Eraker Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices , 2004 .

[8]  Tim Bollerslev,et al.  Long-term equity anticipation securities and stock market volatility dynamics , 1999 .

[9]  R. Engle,et al.  A Permanent and Transitory Component Model of Stock Return Volatility , 1993 .

[10]  Peter H. Ritchken,et al.  Pricing Options under Generalized GARCH and Stochastic Volatility Processes , 1999 .

[11]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[12]  Gurdip Bakshi,et al.  Empirical Performance of Alternative Option Pricing Models , 1997 .

[13]  Jun Pan The jump-risk premia implicit in options: evidence from an integrated time-series study $ , 2002 .

[14]  S. Heston,et al.  A Closed-Form GARCH Option Valuation Model , 2000 .

[15]  A. Gallant,et al.  Alternative models for stock price dynamics , 2003 .

[16]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[17]  J. Maheu Can GARCH Models Capture the Long-Range Dependence in Financial Market Volatility ? ∗ , 2002 .

[18]  Michael W. Brandt,et al.  Range-Based Estimation of Stochastic Volatility Models , 2001 .

[19]  J. Duan THE GARCH OPTION PRICING MODEL , 1995 .

[20]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[21]  Peter F. Christoffersen,et al.  Which GARCH Model for Option Valuation? , 2002, Manag. Sci..

[22]  C. S. Jones The dynamics of stochastic volatility: evidence from underlying and options markets , 2003 .

[23]  P. Carr,et al.  Time-Changed Levy Processes and Option Pricing ⁄ , 2002 .

[24]  J. Wooldridge,et al.  Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances , 1992 .

[25]  Peter Christoffersen,et al.  Série Scientifique Scientific Series Option Valuation with Conditional Skewness Option Valuation with Conditional Skewness , 2022 .

[26]  J. Maheu,et al.  Can GARCH Models Capture Long-Range Dependence? , 2005 .

[27]  Stephen Michael Taylor,et al.  The Term Structure of Volatility Implied by Foreign Exchange Options , 1994, Journal of Financial and Quantitative Analysis.

[28]  Kris Jacobs,et al.  Which GARCH Model for Option Valuation? , 2004, Manag. Sci..

[29]  Jin-Chuan Duan,et al.  APPROXIMATING GARCH‐JUMP MODELS, JUMP‐DIFFUSION PROCESSES, AND OPTION PRICING , 2006 .

[30]  Peter F. Christoffersen,et al.  Option Valuation with Long-Run and Short-Run Volatility Components , 2008 .

[31]  J. Duan,et al.  Série Scientifique Scientific Series Empirical Martingale Simulation for Asset Prices Empirical Martingale Simulation for Asset Prices , 2022 .

[32]  Lars Stentoft,et al.  Pricing American options when the underlying asset follows GARCH processes , 2005 .

[33]  J. Rosenberg,et al.  Stock Returns and Volatility: Pricing the Short-Run and Long-Run Components of Market Risk , 2006 .