Improved Detection of Visual Field Progression Using a Spatiotemporal Boundary Detection Method

Glaucoma is the leading cause of irreversible blindness worldwide and requires regular monitoring upon diagnosis to ascertain whether the disease is stable or progressing. However, making this determination remains a difficult clinical task. Recently, a novel spatiotemporal boundary detection predictor of glaucomatous visual field (VF) progression (STBound) was developed. In this work, we explore the ability of STBound to differentiate progressing and non-progressing glaucoma patients in comparison to existing methods. STBound, Spatial PROGgression, and traditional trend-based progression methods (global index (GI) regression, mean regression slope, point-wise linear regression, permutation of pointwise linear regression) were applied to longitudinal VF data from 191 eyes of 91 glaucoma patients. The ability of each method to identify progression was compared using Akaike information criterion (AIC), full/partial area under the receiver operating characteristic curve (AUC/pAUC), sensitivity, and specificity. STBound offered improved diagnostic ability (AIC: 197.77 vs. 204.11–217.55; AUC: 0.74 vs. 0.63–0.70) and showed no correlation (r: −0.01–0.11; p-values: 0.11–0.93) with the competing methods. STBound combined with GI (the top performing competitor) provided improved performance over all individual metrics and compared to all metrics combined with GI (all p-values < 0.05). STBound may be a valuable diagnostic tool and can be used in conjunction with existing methods.

[1]  Richard A. Russell,et al.  The relationship between variability and sensitivity in large-scale longitudinal visual field data. , 2012, Investigative ophthalmology & visual science.

[2]  R. Ritch,et al.  Risk factors for visual field progression in the low-pressure glaucoma treatment study. , 2012, American journal of ophthalmology.

[3]  Haogang Zhu,et al.  More Accurate Modeling of Visual Field Progression in Glaucoma: ANSWERS. , 2015, Investigative ophthalmology & visual science.

[4]  Anders Heijl,et al.  Prediction of glaucomatous visual field loss by extrapolation of linear trends. , 2008, Archives of ophthalmology.

[5]  B. Chauhan,et al.  How to detect progression in glaucoma. , 2015, Progress in brain research.

[6]  Brenda W Gillespie,et al.  Visual field progression in the Collaborative Initial Glaucoma Treatment Study the impact of treatment and other baseline factors. , 2009, Ophthalmology.

[7]  Chris A. Johnson,et al.  The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. , 2002, Archives of ophthalmology.

[8]  M. C. Leske,et al.  Predictors of long-term progression in the early manifest glaucoma trial. , 2007, Ophthalmology.

[9]  Tzyy-Ping Jung,et al.  Glaucoma Progression Detection Using Structural Retinal Nerve Fiber Layer Measurements and Functional Visual Field Points , 2014, IEEE Transactions on Biomedical Engineering.

[10]  N. Congdon,et al.  Methodological variations in estimating apparent progressive visual field loss in clinical trials of glaucoma treatment , 2000 .

[11]  F. Medeiros,et al.  Structure versus Function in Glaucoma: The Debate That Doesn't Need to Be. , 2016, Ophthalmology.

[12]  S M Drance,et al.  The use of visual field indices in detecting changes in the visual field in glaucoma. , 1990, Investigative ophthalmology & visual science.

[13]  David P Crabb,et al.  Reducing noise in suspected glaucomatous visual fields by using a new spatial filter , 2004, Vision Research.

[14]  Jean-Claude Mwanza,et al.  A Statistical Model to Analyze Clinician Expert Consensus on Glaucoma Progression using Spatially Correlated Visual Field Data , 2016, Translational vision science & technology.

[15]  M. Pepe The Statistical Evaluation of Medical Tests for Classification and Prediction , 2003 .

[16]  M. Dougados,et al.  A randomised, multicentre, double-blind, placebo-controlled trial of etanercept in adults with refractory heel enthesitis in spondyloarthritis: the HEEL trial , 2010, Annals of the rheumatic diseases.

[17]  W. Cleveland,et al.  Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting , 1988 .

[18]  M. C. Leske,et al.  Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. , 2002, Archives of ophthalmology.

[19]  M. Nicolela,et al.  Canadian Glaucoma Study: 3. Impact of risk factors and intraocular pressure reduction on the rates of visual field change. , 2010, Archives of ophthalmology.

[20]  Lori E. Dodd,et al.  Partial AUC Estimation and Regression , 2003, Biometrics.

[21]  Balwantray C. Chauhan,et al.  A comparison of visual field progression criteria of 3 major glaucoma trials in early manifest glaucoma trial patients. , 2008, Ophthalmology.

[22]  D. Garway-Heath,et al.  Mapping the visual field to the optic disc in normal tension glaucoma eyes. , 2000, Ophthalmology.

[23]  Richard A. Russell,et al.  Latanoprost for open-angle glaucoma (UKGTS): a randomised, multicentre, placebo-controlled trial , 2015, The Lancet.

[24]  M. Nicolela,et al.  Properties of the statpac visual field index. , 2011, Investigative ophthalmology & visual science.

[25]  S. Gardiner,et al.  Examination of different pointwise linear regression methods for determining visual field progression. , 2002, Investigative ophthalmology & visual science.

[26]  P. Wishart,et al.  Determining progressive visual field loss in serial Humphrey visual fields. , 1995, Ophthalmology.

[27]  Samuel I. Berchuck,et al.  Diagnosing Glaucoma Progression With Visual Field Data Using a Spatiotemporal Boundary Detection Method , 2018, Journal of the American Statistical Association.

[28]  J. Katz,et al.  Analysis of progressive change in automated visual fields in glaucoma. , 1996, Investigative ophthalmology & visual science.

[29]  Richard A. Russell,et al.  Detecting Changes in Retinal Function: Analysis with Non-Stationary Weibull Error Regression and Spatial Enhancement (ANSWERS) , 2014, PloS one.

[30]  Dimitris Rizopoulos,et al.  Bayesian hierarchical modeling of longitudinal glaucomatous visual fields using a two‐stage approach , 2015, Statistics in medicine.

[31]  Paul H Artes,et al.  Visual field progression in glaucoma: total versus pattern deviation analyses. , 2005, Investigative ophthalmology & visual science.

[32]  Martin L Hazelton,et al.  Spatial modeling of visual field data for assessing glaucoma progression. , 2013, Investigative ophthalmology & visual science.

[33]  Paul H Artes,et al.  Visual field progression in glaucoma: estimating the overall significance of deterioration with permutation analyses of pointwise linear regression (PoPLR). , 2012, Investigative ophthalmology & visual science.

[34]  F. Fitzke,et al.  Effect of surgery on visual field progression in normal-tension glaucoma. , 1997, Ophthalmology.

[35]  Answers , 2000 .

[36]  B. Bengtsson,et al.  A visual field index for calculation of glaucoma rate of progression. , 2008, American journal of ophthalmology.

[37]  David P Crabb,et al.  Monitoring glaucomatous visual field progression: the effect of a novel spatial filter. , 2007, Investigative ophthalmology & visual science.

[38]  Chris A Johnson,et al.  Identification of progressive glaucomatous visual field loss. , 2002, Survey of ophthalmology.