Gamete signalling underlies the evolution of mating types and their number

The gametes of unicellular eukaryotes are morphologically identical, but are nonetheless divided into distinct mating types. The number of mating types varies enormously and can reach several thousand, yet most species have only two. Why do morphologically identical gametes need to be differentiated into self-incompatible mating types, and why is two the most common number of mating types? In this work, we explore a neglected hypothesis that there is a need for asymmetric signalling interactions between mating partners. Our review shows that isogamous gametes always interact asymmetrically throughout sex and argue that this asymmetry is favoured because it enhances the efficiency of the mating process. We further develop a simple mathematical model that allows us to study the evolution of the number of mating types based on the strength of signalling interactions between gametes. Novel mating types have an advantage as they are compatible with all others and rarely meet their own type. But if existing mating types coevolve to have strong mutual interactions, this restricts the spread of novel types. Similarly, coevolution is likely to drive out less attractive mating types. These countervailing forces specify the number of mating types that are evolutionarily stable. This article is part of the themed issue ‘Weird sex: the underappreciated diversity of sexual reproduction’.

[1]  G. Bistis SEXUALITY IN ASCOBOLUS STERCORARIUS. II. PRELIMINARY EXPERIMENTS ON VARIOUS ASPECTS OF THE SEXUAL PROCESS , 1957 .

[2]  H. Ende,et al.  Cell-cell coordination in conjugatingChlamydomonas gametes , 1990, Protoplasma.

[3]  H. Sekimoto,et al.  A newly identified chemotactic sexual pheromone from Closterium ehrenbergii , 1998, Sexual Plant Reproduction.

[4]  I. Maier Gamete orientation and induction of gametogenesis by pheromones in algae and plants , 1993 .

[5]  N. Raju,et al.  Diverse programs of ascus development in pseudohomothallic species of Neurospora, Gelasinospora, and Podospora. , 1994, Developmental genetics.

[6]  R. Meldola Sexual Selection , 1871, Nature.

[7]  E S Lander,et al.  Ploidy regulation of gene expression. , 1999, Science.

[8]  Hilla Peretz,et al.  Ju n 20 03 Schrödinger ’ s Cat : The rules of engagement , 2003 .

[9]  C. Schmid Cell-cell-recognition during fertilization in Ectocarpus siliculosus (Phaeophyceae) , 1993, Hydrobiologia.

[10]  Tetsuya Muramoto,et al.  Genes involved in Dictyostelium discoideum sexual reproduction. , 2006, European journal of cell biology.

[11]  D. Ebbole,et al.  Isolation of pheromone precursor genes of Magnaporthe grisea. , 1999, Fungal genetics and biology : FG & B.

[12]  D. O’Day,et al.  Sexual Interactions in Eukaryotic Microbes , 1982 .

[13]  H. Sekimoto,et al.  DETECTION AND EVALUATION OF A NOVEL SEXUAL PHEROMONE THAT INDUCES SEXUAL CELL DMSION OF CLOSTERIUM EHRENBERGII (CHLOROPHYTA) 1 , 1997 .

[14]  C. Alimenti,et al.  Isolation and Structural Characterization of Two Water‐Borne Pheromones from Euplotes crassus, a Ciliate Commonly Known to Carry Membrane‐Bound Pheromones , 2011, The Journal of eukaryotic microbiology.

[15]  U. Goodenough,et al.  Sex determination in Chlamydomonas. , 2007, Seminars in cell & developmental biology.

[16]  C. Fairhead,et al.  Having sex, yes, but with whom? Inferences from fungi on the evolution of anisogamy and mating types , 2011, Biological reviews of the Cambridge Philosophical Society.

[17]  G. Bistis SEXUALITY IN ASCOBOLUS STERCORARIUS. I. MORPHOLOGY OF THE ASCOGONIUM; PLASMOGAMY; EVIDENCE FOR A SEXUAL HORMONAL MECHANISM , 1956 .

[18]  S. Dowell,et al.  A constitutively active G‐protein‐coupled receptor causes mating self‐compatibility in the mushroom Coprinus , 1999, The EMBO journal.

[19]  R. Debuchy,et al.  The Function of the Coding Sequences for the Putative Pheromone Precursors in Podospora anserina Is Restricted to Fertilization , 2005, Eukaryotic Cell.

[20]  K. Heckmann,et al.  Pheromones of the ciliate Euplotes octocarinatus not only induce conjugation but also function as chemoattractants. , 1997, The Journal of experimental zoology.

[21]  J. Jankowski,et al.  The effect of dietary selenium source on embryonic development in Turkeys. , 2012, Folia biologica.

[22]  K. Borkovich,et al.  Pheromones Are Essential for Male Fertility and Sufficient To Direct Chemotropic Polarized Growth of Trichogynes during Mating in Neurospora crassa , 2006, Eukaryotic Cell.

[23]  Yuki Tsuchikane,et al.  New insights into the regulation of sexual reproduction in Closterium. , 2012, International review of cell and molecular biology.

[24]  J. Strassmann,et al.  Sex ratio and gamete size across eastern North America in Dictyostelium discoideum, a social amoeba with three sexes , 2016, Journal of evolutionary biology.

[25]  R. W. Siegel,et al.  The mating-type substances of Paramecium bursaria , 1963 .

[26]  E. Kothe,et al.  Basidiomycete Mating Type Genes and Pheromone Signaling , 2010, Eukaryotic Cell.

[27]  P. Lipke,et al.  AG alpha 1 is the structural gene for the Saccharomyces cerevisiae alpha-agglutinin, a cell surface glycoprotein involved in cell-cell interactions during mating , 1989, Molecular and cellular biology.

[28]  K. Heckmann,et al.  Nuclear processes in Euplotes octocarinatus during conjugation. , 1991, European Journal of Protistology.

[29]  Sujal S. Phadke,et al.  Rapid diversification of mating systems in ciliates , 2009 .

[30]  L. Clement,et al.  A sex-inducing pheromone triggers cell cycle arrest and mate attraction in the diatom Seminavis robusta , 2016, Scientific Reports.

[31]  G. Bistis Evidence for diffusible, mating-type-specific trichogyne attractants inNeurospora crassa , 1983 .

[32]  L. Hartwell,et al.  Saccharomyces cerevisiae cells execute a default pathway to select a mate in the absence of pheromone gradients , 1995, The Journal of cell biology.

[33]  G. Bistis CHEMOTROPIC INTERACTIONS BETWEEN TRICHOGYNES AND CONIDIA OF OPPOSITE MATING-TYPE IN NEUROSPORA CRASSA , 1981 .

[34]  T. Hogetsu,et al.  Light, a nitrogen-depleted medium and cell-cell interaction in the conjugation process of Closterium ehrenbergii Meneghini , 1979 .

[35]  H. Niculita‐Hirzel,et al.  TRANSITIONS FROM REPRODUCTIVE SYSTEMS GOVERNED BY TWO SELF‐INCOMPATIBLE LOCI TO ONE IN FUNGI , 2013, Evolution; international journal of organic evolution.

[36]  A. Hatanaka,et al.  Dictyopterenes from three Japanese brown algae , 1991 .

[37]  M. Picard,et al.  What is a bona fide mating-type gene? Internuclear complementation of mat mutants in Podospora anserina , 1997, Molecular and General Genetics MGG.

[38]  R. Hoekstra ON THE ASYMMETRY OF SEX - EVOLUTION OF MATING TYPES IN ISOGAMOUS POPULATIONS , 1982 .

[39]  R. Seymour,et al.  Selection for mitonuclear co-adaptation could favour the evolution of two sexes , 2012, Proceedings of the Royal Society B: Biological Sciences.

[40]  U. Goodenough Cyclic AMP enhances the sexual agglutinability of Chlamydomonas flagella , 1989, The Journal of cell biology.

[41]  C. Alimenti,et al.  Ciliate pheromone structures and activity: a review , 2015 .

[42]  M. Uyenoyama On the evolution of genetic incompatibility systems. III. Introduction of weak gametophytic self-incompatibility under partial inbreeding. , 1988, Theoretical population biology.

[43]  Y. Iwasa,et al.  EVOLUTION OF THE NUMBER OF SEXES. , 1987 .

[44]  S. Imam,et al.  Activation of the cell wall degrading protease, lysin, during sexual signalling in Chlamydomonas: the enzyme is stored as an inactive, higher relative molecular mass precursor in the periplasm , 1989, The Journal of cell biology.

[45]  Hui Zhao,et al.  Interaction of α-Agglutinin and a-Agglutinin,Saccharomyces cerevisiae Sexual Cell Adhesion Molecules , 2001 .

[46]  G. Bloomfield Genetics of sex determination in the social amoebae , 2011, Development, growth & differentiation.

[47]  U. Goodenough,et al.  Gametic differentiation in Chlamydomonas reinhardtii. III. Cell wall lysis and microfilament-associated mating structure activation in wild- type and mutant strains , 1975, The Journal of cell biology.

[48]  Y. Tsubo Chemotaxis and Sexual Behavior in Chlamydomonas , 1961 .

[49]  R. Law,et al.  Four steps to two sexes , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[50]  D. Zickler,et al.  How the cytoskeleton recognizes and sorts nuclei of opposite mating type during the sexual cycle in filamentous ascomycetes. , 1994, Developmental biology.

[51]  N. Perrin WHAT USES ARE MATING TYPES? THE “DEVELOPMENTAL SWITCH” MODEL , 2012, Evolution; international journal of organic evolution.

[52]  F. Finkernagel,et al.  The Transcription Factor Rbf1 Is the Master Regulator for b-Mating Type Controlled Pathogenic Development in Ustilago maydis , 2010, PLoS pathogens.

[53]  D. Inzé,et al.  Metabolomics enables the structure elucidation of a diatom sex pheromone. , 2013, Angewandte Chemie.

[54]  D. O’Day,et al.  Evidence for a hierarchical mating system operating via pheromones in Dictyostelium giganteum , 1979, Journal of bacteriology.

[55]  F. Dini,et al.  Preconjugant cell interaction in Euplotes crassus: An analysis by temporary cycloheximide treatments , 1982 .

[56]  Y. Kohara,et al.  Construction of a gamete-enriched gene pool and RNAi-mediated functional analysis in Dictyostelium discoideum , 2003, Mechanisms of Development.

[57]  A. Pomiankowski,et al.  The evolution of mating type switching , 2016, Evolution; international journal of organic evolution.

[58]  K. VanWinkle-Swift,et al.  Uniparental inheritance in a homothallic alga , 1983, Nature.

[59]  L. Casselton Mate recognition in fungi , 2002, Heredity.

[60]  L. Vaillancourt,et al.  Pheromones and Pheromone Receptors in Schizophyllum commune Mate Recognition: Retrospective of a Half-Century of Progress and a Look Ahead , 2007 .

[61]  W. Snell,et al.  Flagellar Adhesion between mt+ and mt− Chlamydomonas Gametes Regulates Phosphorylation of the mt+-specific Homeodomain Protein GSP1* , 1999, The Journal of Biological Chemistry.

[62]  F. Hindák,et al.  Zygospore formation between homothallic and heterothallic strains of Closterium , 2011, Sexual Plant Reproduction.

[63]  T. Zima,et al.  Lipoprotein lipase deficiency: clinical, biochemical and molecular characteristics in three patients with novel mutations in the LPL gene. , 2014, Folia biologica.

[64]  S. Afon'kin Cell-cell recognition in Dileptus. The dynamics of homo- and heterotypic pair formation during conjugation , 1991 .

[65]  I. Herskowitz,et al.  Mating Pheromones of Saccharomyces kluyveri: Pheromone Interactions Between Saccharomyces kluyveri and Saccharomyces cerevisiae , 1979, Journal of bacteriology.

[66]  K. Hauser,et al.  Saccharomyces cerevisiae a‐ and alpha‐agglutinin: characterization of their molecular interaction. , 1991, The EMBO journal.

[67]  D. Mann,et al.  Experimental studies on sexual reproduction in diatoms. , 2004, International review of cytology.

[68]  O. De Clerck,et al.  Uncovering the genetic basis for early isogamete differentiation: a case study of Ectocarpus siliculosus , 2013, BMC Genomics.

[69]  D. O’Day,et al.  Sexual hormone in the cellular slime mould Dictyostelium purpureum. , 1976, Canadian journal of microbiology.

[70]  Evolution of sexual asymmetry , 2004, BMC Evolutionary Biology.

[71]  T. Suzaki,et al.  Behavioural changes induced by the conjugation-inducing pheromones, gamone 1 and 2, in the ciliate Blepharisma japonicum. , 2010, European journal of protistology.

[72]  P. Coesel,et al.  Vigorous chemotactic attraction as a sexual response in Closterium ehrenbergii Meneghini (Desmidiaceae, Chlorophyta) , 1986 .

[73]  N. L. Glass,et al.  Cell and nuclear recognition mechanisms mediated by mating type in filamentous ascomycetes. , 2000, Current opinion in microbiology.

[74]  A. Martinez-Espinoza,et al.  Molecular analysis of the pheromone and pheromone receptor genes of Ustilago hordei. , 1999, Gene.

[75]  R. Coria,et al.  The pheromone response pathway of Kluyveromyces lactis. , 2006, FEMS yeast research.

[76]  J. Derisi,et al.  Genomic dissection of the cell-type-specification circuit in Saccharomyces cerevisiae , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[77]  R. Debuchy,et al.  Co-expression of the mating-type genes involved in internuclear recognition is lethal in Podospora anserina. , 2000, Genetics.

[78]  B. Charlesworth,et al.  The evolution and breakdown of S-allele systems , 1979, Heredity.

[79]  C. Ballou,et al.  Cell-cell recognition in yeast: isolation of intact alpha-agglutinin from Saccharomyces kluyveri. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[80]  R. Bradshaw,et al.  Chemical Signaling in Ciliates , 1995, The Journal of eukaryotic microbiology.

[81]  Laura Merlini,et al.  Mate and fuse: how yeast cells do it , 2013, Open Biology.

[82]  Laurence D. Hurst,et al.  Cytoplasmic fusion and the nature of sexes , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[83]  U. Goodenough,et al.  Cyclic AMP functions as a primary sexual signal in gametes of Chlamydomonas reinhardtii , 1987, The Journal of cell biology.

[84]  Wendell A. Lim,et al.  Secreting and Sensing the Same Molecule Allows Cells to Achieve Versatile Social Behaviors , 2014, Science.

[85]  T. D. Brock,et al.  Molecular basis of mating in the yeast hansenula wingei. , 1968, Bacteriological reviews.

[86]  C. Alimenti,et al.  Autocrine, Mitogenic Pheromone Receptor Loop of the Ciliate Euplotes raikovi: Pheromone-Induced Receptor Internalization , 2005, Eukaryotic Cell.

[87]  K. Borkovich,et al.  A pheromone receptor gene, pre‐1, is essential for mating type‐specific directional growth and fusion of trichogynes and female fertility in Neurospora crassa , 2004, Molecular microbiology.

[88]  R. Seymour,et al.  Dynamics of mitochondrial inheritance in the evolution of binary mating types and two sexes , 2013, Proceedings of the Royal Society B: Biological Sciences.

[89]  Natalia Sawka Mating types in Paramecium and a molecular approach to their determination. , 2012, Folia biologica.

[90]  Alexander Zahiri,et al.  The Ustilago maydis b mating type locus controls hyphal proliferation and expression of secreted virulence factors in planta , 2010, Molecular microbiology.

[91]  L. Beukeboom,et al.  The Evolution of Sex Determination , 2014 .

[92]  Lei Zhang,et al.  Viral Repression of Fungal Pheromone Precursor Gene Expression , 1998, Molecular and Cellular Biology.

[93]  Y. Iwasa,et al.  Cell–cell signalling in sexual chemotaxis: a basis for gametic differentiation, mating types and sexes , 2015, Journal of The Royal Society Interface.

[94]  A. Kitamura,et al.  INACTIVATION OF CELL MOVEMENT FOLLOWING SEXUAL CELL RECOGNITION IN PARAMECIUM CAUDATUM , 1984 .

[95]  Elizabeth H. Harris,et al.  Introduction to Chlamydomonas and its laboratory use , 2009 .

[96]  T. Ichimura Sexual cell division and conjugation - papilla formation in sexual reproduction of Closterium strigosum , 1971 .

[97]  G. Bell,et al.  The evolution of anisogamy. , 1978, Journal of theoretical biology.

[98]  E. Kothe,et al.  The mating‐type locus B alpha 1 of Schizophyllum commune contains a pheromone receptor gene and putative pheromone genes. , 1995, The EMBO journal.

[99]  H. Sekimoto Plant sex pheromones. , 2005, Vitamins and hormones.

[100]  E. Kothe,et al.  Mating types and pheromone recognition in the Homobasidiomycete schizophyllum commune. , 1999, Fungal genetics and biology : FG & B.

[101]  Laurence D. Hurst Why are there only two sexes? , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[102]  James A. Sethian,et al.  Gamete Motion, Search, and the Evolution of Anisogamy, Oogamy, and Chemotaxis , 1985, The American Naturalist.

[103]  E. Haag Why two sexes? Sex determination in multicellular organisms and protistan mating types. , 2007, Seminars in cell & developmental biology.

[104]  Yuki Tsuchikane,et al.  Physiological characterization of the sex pheromone protoplast‐release‐inducing protein from the Closterium peracerosum‐strigosum‐littorale complex (Charophyta) , 2006 .

[105]  M. Picard,et al.  Mating types and sexual development in filamentous ascomycetes , 1997, Microbiology and molecular biology reviews : MMBR.

[106]  Yuki Tsuchikane,et al.  A sex pheromone, protoplast release-inducing protein (PR-IP) inducer, induces sexual cell division and production of PR-IP in Closterium. , 2005, Plant & cell physiology.

[107]  D. O’Day,et al.  Signalling and sex in the social amoebozoans , 2012, Biological reviews of the Cambridge Philosophical Society.

[108]  D. Müller,et al.  Female gamete membrane glycoproteins potentially involved in gamete recognition in Ectocarpus siliculosus (Phaeophyceae) , 1994 .

[109]  I. Hastings Population genetic aspects of deleterious cytoplasmic genomes and their effect on the evolution of sexual reproduction. , 1992, Genetical research.

[110]  C. Shimoda,et al.  Distal and Proximal Actions of Peptide Pheromone M-Factor Control Different Conjugation Steps in Fission Yeast , 2013, PloS one.

[111]  C. Staben,et al.  Mating type in filamentous fungi. , 1997, Annual review of genetics.