Visual Data Mining in Spatial Interaction Analysis with Self-Organizing Maps

Given that many spatial interaction (SI) systems are often constituted in large databases with high thematic dimensionality, data complexity reduction tasks are essential. The opportunity exists for researchers to examine the formation of different types of SIs as well as their interdependencies by exploring the patterns embedded in the data. To circumvent the limitations of existing methods of flow data compression and visual exploration, we propose an integrated computational and visual approach, known as VISIDAMIN, for handling both SI data projection and SI data quantization at once. The computational method of self-organizing maps serves as the data mining engine in this process. Using a large domestic air travel dataset as a case study, we examine how the characteristics of the air transport system interact with the SI system to create relationships and structures within the US domestic airline market.

[1]  Urska Demsar,et al.  Knowledge Discovery in the Environmental Sciences: Visual and Automatic Data Mining for Radon Problems in Groundwater , 2007, Trans. GIS.

[2]  Timothy M. Vowles,et al.  The geographic effects of US airline alliances , 2000 .

[3]  M. Dacey,et al.  A graph theory interpretation of nodal regions , 1961 .

[4]  William A. Kretzschmar,et al.  Detecting Geographic Associations in English Dialect Features in North America within a Visual Data Mining Environment Integrating Self‐Organizing Maps , 2008 .

[5]  C. H. Chen,et al.  Classification of multi-sensor remote sensing images using self-organizing feature maps and radial basis function networks , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[6]  Tom Kauko,et al.  Using the Self-Organising Map to Identify Regularities across Country-Specific Housing-Market Contexts , 2005 .

[7]  A. Stewart Fotheringham,et al.  Trends in quantitative methods III: stressing the visual , 1999 .

[8]  Alan M. MacEachren,et al.  Exploratory cartographic visualization: advancing the agenda , 1997 .

[9]  Haim Levkowitz,et al.  From Visual Data Exploration to Visual Data Mining: A Survey , 2003, IEEE Trans. Vis. Comput. Graph..

[10]  Brian J. L. Berry,et al.  Essays on commodity flows and the spatial structure of the Indian economy , 1968 .

[11]  W. Tobler A Model of Geographical Movement , 1981 .

[12]  John H. Holimes Dyadic interaction matrices , 1978 .

[13]  William R. Black,et al.  TOWARD A FACTORIAL ECOLOGY OF FLOWSV , 1973 .

[14]  Mark Gahegan,et al.  Introducing geovista studio: an integrated suite of visualization and computational methods for expl , 2002 .

[15]  G. Mulligan,et al.  Labor Migration Amongst Hierarchically Competing and Intervening Origins and Destinations , 1992, Environment & planning A.

[16]  Lin Liu,et al.  Recent advances in the exploratory analysis of interregional flows in space and time , 1997 .

[17]  Daniel A. Griffith,et al.  Spatial Structure and Spatial Interaction: 25 Years Later , 2007 .

[18]  Jin Chen,et al.  A Visualization System for Space-Time and Multivariate Patterns (VIS-STAMP) , 2006, IEEE Transactions on Visualization and Computer Graphics.

[19]  Fernando Bação,et al.  Applications of Different Self‐Organizing Map Variants to Geographical Information Science Problems , 2008 .

[20]  Bin Jiang,et al.  Selection of Streets from a Network Using Self‐Organizing Maps , 2004, Trans. GIS.

[21]  Edward L. Ullman,et al.  American commodity flow : a geographical interpretation of rail and water traffic based on Principles of spatial interchange , 1959 .

[22]  T. Kohonen,et al.  Exploratory Data Analysis by the Self-Organizing Map: Structures of Welfare and Poverty in the World , 1996 .

[23]  W. Siddall,et al.  Geography as Spatial Interaction , 1980 .

[24]  A S Fotheringham,et al.  A New Set of Spatial-Interaction Models: The Theory of Competing Destinations † , 1983 .

[25]  J. Thill,et al.  Spatial interaction modelling , 2003 .

[26]  S. Openshaw Neuroclassification of Spatial Data , 1994 .

[27]  L. Lo,et al.  Substitutability, Spatial Structure, and Spatial Interaction , 2010 .

[28]  Menno-Jan Kraak,et al.  Alternative Visualization of Large Geospatial Datasets , 2004 .

[29]  Thomas Hatzichristos,et al.  Delineation of Demographic Regions with GIS and Computational Intelligence , 2004 .

[30]  A. Ultsch,et al.  Self-Organizing Neural Networks for Visualisation and Classification , 1993 .

[31]  Mark Gahegan,et al.  Multivariate Analysis and Geovisualization with an Integrated Geographic Knowledge Discovery Approach , 2005, Cartography and geographic information science.

[32]  M. Wachowicz,et al.  Geoinsight; an approach for developing a knowledge construction process based on the integration of GVis and KDD methods , 2001 .

[33]  Waldo R. Tobler,et al.  Spatial Interaction Patterns , 1976 .

[34]  Manfred M. Fischer,et al.  Computational Neural Networks — Tools for Spatial Data Analysis , 2001 .

[35]  Alan M. MacEachren,et al.  Constructing knowledge from multivariate spatiotemporal data: integrating geographical visualization with knowledge discovery in database methods , 1999, Int. J. Geogr. Inf. Sci..

[36]  T. Nakaya Local Spatial Interaction Modelling Based on the Geographically Weighted Regression Approach , 2003 .

[37]  Menno-Jan Kraak,et al.  Geovisualization to support the exploration of large health and demographic survey data , 2004, International journal of health geographics.

[38]  Donald W. Bouldin,et al.  A Cluster Separation Measure , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  André Skupin,et al.  Visualizing Demographic Trajectories with Self-Organizing Maps , 2005, GeoInformatica.

[40]  Mark Gahegan,et al.  Geospatial Data Mining and Knowledge Discovery , 2000 .

[41]  Waldo R. Tobler,et al.  Experiments In Migration Mapping By Computer , 1987 .

[42]  Jean-Claude Thill,et al.  Cross-scale analysis of cluster correspondence using different operational neighborhoods , 2008, J. Geogr. Syst..

[43]  Alan M. MacEachren,et al.  An evolving cognitive-semiotic approach to geographic visualization and knowledge construction , 2001 .

[44]  Yongmei Jean-Claude Lu,et al.  Assessing the Cluster Correspondence between Paired Point Locations , 2003 .

[45]  Stan Openshaw Developing Automated and Smart Spatial Pattern Exploration Tools for Geographical Information Systems Applications , 1995 .

[46]  Juha Vesanto,et al.  SOM-based data visualization methods , 1999, Intell. Data Anal..