A generalization of Kneser's conjecture

We investigate some coloring properties of Kneser graphs. A semi-matching coloring is a proper coloring c:V(G)->N such that for any two consecutive colors, the edges joining the colors form a matching. The minimum positive integer t for which there exists a semi-matching coloring c:V(G)->{1,2,...,t} is called the semi-matching chromatic number of G and denoted by @g"""m(G). In view of Tucker-Ky Fan's lemma, we show that @g"""m(KG(n,k))[email protected](KG(n,k))-2=2n-4k+2 provided that [email protected]?83k. This gives a partial answer to a conjecture of Omoomi and Pourmiri [Local coloring of Kneser graphs, Discrete Mathematics, 308 (24): 5922-5927, (2008)]. Moreover, for any Kneser graph KG(n,k), we show that @g"""m(KG(n,k))>=max{[email protected](KG(n,k))-10,@g(KG(n,k))}, where n>=2k>=4. Also, for n>=2k>=4, we conjecture that @g"""m(KG(n,k))[email protected](KG(n,k))-2.

[1]  J. Robertson Some topological properties of certain spaces of differentiable homeomorphisms of disks and spheres. , 1965 .

[2]  Gary Chartrand,et al.  Local colorings of graphs , 2003 .

[3]  A. Schrijver,et al.  Vertex-critical subgraphs of Kneser-graphs , 1978 .

[4]  M. Kneser,et al.  Ein Satz über abelsche Gruppen mit Anwendungen auf die Geometrie der Zahlen , 1954 .

[5]  Hossein Hajiabolhassan,et al.  Graph Powers and Graph Homomorphisms , 2010, Electron. J. Comb..

[6]  Peng-An Chen,et al.  A new coloring theorem of Kneser graphs , 2011, J. Comb. Theory, Ser. A.

[7]  Hossein Hajiabolhassan,et al.  Circular coloring and Mycielski construction , 2009, Discret. Math..

[8]  Francis Edward Su,et al.  A constructive proof of Ky Fan's generalization of Tucker's lemma , 2005, J. Comb. Theory, Ser. A.

[9]  Behnaz Omoomi,et al.  Local coloring of Kneser graphs , 2008, Discret. Math..

[10]  Xuding Zhu,et al.  Circular chromatic number of Kneser graphs , 2003, J. Comb. Theory, Ser. B.

[11]  László Lovász,et al.  Kneser's Conjecture, Chromatic Number, and Homotopy , 1978, J. Comb. Theory A.

[12]  J. Matousek,et al.  Using The Borsuk-Ulam Theorem , 2007 .

[13]  K. Fan A Generalization of Tucker's Combinatorial Lemma with Topological Applications , 1952 .

[14]  Xuding Zhu,et al.  Recent Developments in Circular Colouring of Graphs , 2006 .

[15]  Frédéric Meunier A topological lower bound for the circular chromatic number of Schrijver graphs , 2005, J. Graph Theory.

[16]  P. Erdös,et al.  INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS , 1961 .

[17]  Gwen Spencer Combinatorial Consequences of Relatives of the Lusternik-Schnirelmann-Borsuk Theorem , 2005 .

[18]  Gábor Tardos,et al.  Local Chromatic Number, KY Fan's Theorem, And Circular Colorings , 2006, Comb..

[19]  Eth Zentrum,et al.  A Combinatorial Proof of Kneser's Conjecture , 2022 .

[20]  SU Francisedward USING TOPOLOGICAL METHODS TO FORCE MAXIMAL COMPLETE BIPARTITE SUBGRAPHS OF KNESER GRAPHS , 2005 .

[21]  Gábor Tardos,et al.  Colorful subgraphs in Kneser-like graphs , 2007, Eur. J. Comb..

[22]  A. J. W. Hilton,et al.  SOME INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS , 1967 .