Learning Knowledge Graph Embedding With Heterogeneous Relation Attention Networks

Knowledge graph (KG) embedding aims to study the embedding representation to retain the inherent structure of KGs. Graph neural networks (GNNs), as an effective graph representation technique, have shown impressive performance in learning graph embedding. However, KGs have an intrinsic property of heterogeneity, which contains various types of entities and relations. How to address complex graph data and aggregate multiple types of semantic information simultaneously is a critical issue. In this article, a novel heterogeneous GNNs framework based on attention mechanism is proposed. Specifically, the neighbor features of an entity are first aggregated under each relation-path. Then the importance of different relation-paths is learned through the relation features. Finally, each relation-path-based features with the learned weight values are aggregated to generate the embedding representation. Thus, the proposed method not only aggregates entity features from different semantic aspects but also allocates appropriate weights to them. This method can capture various types of semantic information and selectively aggregate informative features. The experiment results on three real-world KGs demonstrate superior performance when compared with several state-of-the-art methods.