Bottom-Up Assembly of Molecular Nanostructures by Means of Ferroelectric Lithography.

Here, we report on the photochemical deposition of Rhodamine 6G (Rh6G) and Alexa647 molecules from aqueous and methanolic solution along 180° ferroelectric (FE) domain walls (DWs) of z-cut lithium niobate (LNO) single crystals. Molecules and FE domains were investigated by means of dynamic-mode AFM, piezoresponse force microscopy (PFM), and confocal scanning fluorescence microscopy. A high deposition affinity for 180° DWs on the LNO surface is observed, leading to the formation of molecular nanowires. Additionally, a more complex deposition pattern for Rh6G adsorbed to the domain areas of freshly poled samples was equally observed, being associated with the DW dynamics. These results are explained by considering contributions from screening-charge-dependent photochemistry as confined to the DWs, UV-induced DW motion, and transient electrostatic fields arising from the metastable defect distribution shortly after poling. Hence, tuning these effects offers the possibility for accurately controlling the complex bottom-up assembly of functional molecular nanostructures through domain-structured ferroelectric templates.

[1]  A. Tagantsev,et al.  Quantum properties of charged ferroelectric domain walls , 2015 .

[2]  A. Gruverman,et al.  Toward Ferroelectric Control of Monolayer MoS2. , 2015, Nano letters.

[3]  K. Kitamura,et al.  Domain wall kinetics of lithium niobate single crystals near the hexagonal corner , 2015 .

[4]  L. Eng,et al.  Multiphoton photoluminescence contrast in switched Mg:LiNbO3 and Mg:LiTaO3 single crystals , 2014 .

[5]  Hao Yan,et al.  Structural DNA Nanotechnology: State of the Art and Future Perspective , 2014, Journal of the American Chemical Society.

[6]  L. Eng,et al.  Multiphoton-induced luminescence contrast between antiparallel ferroelectric domains in Mg-doped LiNbO3 , 2014 .

[7]  N. Dasgupta,et al.  25th Anniversary Article: Semiconductor Nanowires – Synthesis, Characterization, and Applications , 2014, Advanced materials.

[8]  A. Rosenhahn,et al.  Adherent cells avoid polarization gradients on periodically poled LiTaO3 ferroelectrics , 2013, Biointerphases.

[9]  P. Ferraro,et al.  Pyroelectric manipulation of liquid crystal droplets , 2013, Optical Metrology.

[10]  Jiaqi Huang,et al.  The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. , 2013, Small.

[11]  Qian Li,et al.  Domain-selective photochemical reaction on oriented ferroelectric Pb(In 1/2 Nb 1/2 )O 3 -Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 single crystals , 2013 .

[12]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[13]  L. Eng,et al.  Conducting Domain Walls in Lithium Niobate Single Crystals , 2012 .

[14]  B. Rodriguez,et al.  Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals. , 2012, ACS nano.

[15]  S. Dunn,et al.  Photochemical reduction of Al3 + to Al0 over a ferroelectric photocatalyst — LiNbO3 , 2012 .

[16]  Xiaojiang Liu,et al.  Multifunctional protein-enabled patterning on arrayed ferroelectric materials. , 2012, ACS applied materials & interfaces.

[17]  D. Bonnell,et al.  Controlling Polarization Dependent Reactions to Fabricate Multi‐Component Functional Nanostructures , 2011 .

[18]  R. Nemanich,et al.  Photo-induced Ag deposition on periodically poled lithium niobate: Concentration and intensity dependence , 2011 .

[19]  F. Ohuchi,et al.  Patterning of silver nanoparticles on visible light-sensitive Mn-doped lithium niobate photogalvanic crystals , 2011 .

[20]  R. Nemanich,et al.  Photoinduced Ag deposition on periodically poled lithium niobate: Wavelength and polarization screening dependence , 2011 .

[21]  Venkatraman Gopalan,et al.  Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors , 2011, 1103.2745.

[22]  A. Gruverman,et al.  Polarization-specific adsorption of organic molecules on ferroelectric LiNbO3 surfaces , 2010 .

[23]  G. Rohrer,et al.  Composition Dependence of the Photochemical reduction of Ag by Ba1−xSrxTiO3 , 2010 .

[24]  Jan Fousek,et al.  Patterning of dielectric nanoparticles using dielectrophoretic forces generated by ferroelectric polydomain films , 2010, 1003.5478.

[25]  S. Dunn,et al.  The photochemical growth of silver nanoparticles on semiconductor surfaces—initial nucleation stage , 2009, Nanotechnology.

[26]  L. Eng,et al.  Ferroelectric lithography: bottom-up assembly and electrical performance of a single metallic nanowire. , 2009, Nano letters.

[27]  A. Gruverman,et al.  Physical adsorption on ferroelectric surfaces: photoinduced and thermal effects , 2008, Nanotechnology.

[28]  Steve Dunn,et al.  Influence of ferroelectricity on the photoelectric effect of LiNbO3 , 2008 .

[29]  Pietro Ferraro,et al.  Dielectrophoretic trapping of suspended particles by selective pyroelectric effect in lithium niobate crystals , 2008 .

[30]  V. Shur,et al.  Shape Evolution of Isolated Micro-Domains in Lithium Niobate , 2007 .

[31]  Steve Dunn,et al.  Insights into the relationship between inherent materials properties of PZT and photochemistry for the development of nanostructured silver , 2007 .

[32]  D. Bonnell,et al.  Polarization and local reactivity on organic ferroelectric surfaces: ferroelectric nanolithography using poly(vinylidene fluoride). , 2007, ACS nano.

[33]  K. Terabe,et al.  Photocatalytic nanoparticle deposition on LiNbO3 nanodomain patterns via photovoltaic effect , 2007 .

[34]  Shi-ning Zhu,et al.  Nanoparticle decoration of ferroelectric domain patterns in LiNbO3 crystal , 2007 .

[35]  R. Nemanich,et al.  Fabrication of metallic nanowires on a ferroelectric template via photochemical reaction , 2006 .

[36]  Karsten Buse,et al.  Ultraviolet light-assisted domain inversion in magnesium-doped lithium niobate crystals , 2005 .

[37]  D. Bonnell,et al.  In situ deposition/positioning of magnetic nanoparticles with ferroelectric nanolithography , 2005 .

[38]  Steve Dunn,et al.  Using the surface spontaneous depolarization field of ferroelectrics to direct the assembly of virus particles , 2004 .

[39]  Karsten Buse,et al.  Impact of ultraviolet light on coercive field, poling dynamics and poling quality of various lithium niobate crystals from different sources , 2004 .

[40]  Steve Dunn,et al.  Atomic Polarization and Local Reactivity on Ferroelectric Surfaces: A New Route toward Complex Nanostructures , 2002 .

[41]  G. Rohrer,et al.  Spatial Separation of Photochemical Oxidation and Reduction Reactions on the Surface of Ferroelectric BaTiO3 , 2001 .

[42]  P. Günter,et al.  Mapping the domain distribution at ferroelectric surfaces by scanning force microscopy , 1998 .

[43]  A. Haußmann Nano Lithography Based on Domain Patterning of Ferroelectrics , 2012 .