Thermally stable voltage-controlled perpendicular magnetic anisotropy in Mo|CoFeB|MgO structures

We study voltage-controlled magnetic anisotropy (VCMA) and other magnetic properties in annealed Mo|CoFeB|MgO layered structures. The interfacial perpendicular magnetic anisotropy (PMA) is observed to increase with annealing over the studied temperature range, and a VCMA coefficient of about 40 fJ/V-m is sustained after annealing at temperatures as high as 430 °C. Ab initio electronic structure calculations of interfacial PMA as a function of strain further show that strain relaxation may lead to the increase of interfacial PMA at higher annealing temperatures. Measurements also show that there is no significant VCMA and interfacial PMA dependence on the CoFeB thickness over the studied range, which illustrates the interfacial origin of the anisotropy and its voltage dependence, i.e., the VCMA effect. The high thermal annealing stability of Mo|CoFeB|MgO structures makes them compatible with advanced CMOS back-end-of-line processes, and will be important for integration of magnetoelectric random access memory into on-chip embedded applications.

[1]  Kang L. Wang,et al.  VOLTAGE-CONTROLLED MAGNETIC ANISOTROPY IN SPINTRONIC DEVICES , 2012 .

[2]  J. G. Alzate,et al.  Voltage-induced switching of nanoscale magnetic tunnel junctions , 2012, 2012 International Electron Devices Meeting.

[3]  J. Robertson High dielectric constant oxides , 2004 .

[4]  Seung H. Kang,et al.  Scalable and thermally robust perpendicular magnetic tunnel junctions for STT-MRAM , 2015 .

[5]  Kang L. Wang,et al.  Giant voltage modulation of magnetic anisotropy in strained heavy metal/magnet/insulator heterostructures , 2015 .

[6]  S. Yuasa,et al.  Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions , 2004, Nature materials.

[7]  Kang L. Wang,et al.  Low-power non-volatile spintronic memory: STT-RAM and beyond , 2013 .

[8]  Guohan Hu,et al.  Development of perpendicularly magnetized Ta|CoFeB|MgO-based tunnel junctions at IBM (invited) , 2014 .

[9]  S. Eguchi,et al.  Transmission electron microscopy study on the crystallization and boron distribution of CoFeB/MgO/CoFeB magnetic tunnel junctions with various capping layers , 2009 .

[10]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[11]  S. Le,et al.  Perpendicular spin transfer torque magnetic random access memories with high spin torque efficiency and thermal stability for embedded applications (invited) , 2014 .

[12]  Arnaud Furnemont,et al.  BEOL compatible high tunnel magneto resistance perpendicular magnetic tunnel junctions using a sacrificial Mg layer as CoFeB free layer cap , 2015 .

[13]  Qi Hu,et al.  Electric-Field-Controlled Magnetoelectric RAM: Progress, Challenges, and Scaling , 2015, IEEE Transactions on Magnetics.

[14]  Hitoshi Kubota,et al.  Underlayer material influence on electric-field controlled perpendicular magnetic anisotropy in CoFeB/MgO magnetic tunnel junctions , 2015 .

[15]  H. Ohno,et al.  A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. , 2010, Nature materials.

[16]  H. Ohno,et al.  Dependence of magnetic anisotropy on MgO thickness and buffer layer in Co20Fe60B20-MgO structure , 2011 .

[17]  Hitoshi Kubota,et al.  Voltage-Induced Magnetic Anisotropy Changes in an Ultrathin FeB Layer Sandwiched between Two MgO Layers , 2013 .

[18]  Seiji Mitani,et al.  Influence of boron diffusion on the perpendicular magnetic anisotropy in Ta|CoFeB|MgO ultrathin films , 2015 .

[19]  H. Ohno,et al.  Electric field-induced magnetization reversal in a perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction , 2012 .

[20]  Shinji Miwa,et al.  Opposite signs of voltage-induced perpendicular magnetic anisotropy change in CoFeB|MgO junctions with different underlayers , 2013 .

[21]  Steven M. George,et al.  Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates , 2002 .

[22]  John Q. Xiao,et al.  Rapid thermal annealing study of magnetoresistance and perpendicular anisotropy in magnetic tunnel junctions based on MgO and CoFeB , 2011 .

[23]  A. Panchula,et al.  Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers , 2004, Nature materials.

[24]  Kang L. Wang,et al.  Voltage-induced ferromagnetic resonance in magnetic tunnel junctions. , 2012, Physical review letters.

[25]  Enhanced interface perpendicular magnetic anisotropy in Ta|CoFeB|MgO using nitrogen doped Ta underlayers , 2013, 1305.6660.

[26]  S. Mangin,et al.  Magnetic anisotropy modified by electric field in V/Fe/MgO(001)/Fe epitaxial magnetic tunnel junction , 2013 .

[27]  A. Tulapurkar,et al.  Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. , 2009, Nature nanotechnology.

[28]  Pedram Khalili,et al.  The computer chip that never forgets , 2015, IEEE Spectrum.

[29]  Meng Xu,et al.  Enhanced tunneling magnetoresistance and perpendicular magnetic anisotropy in Mo/CoFeB/MgO magnetic tunnel junctions , 2015 .

[30]  Bo Zhang,et al.  Tunnel magnetoresistance in thermally robust Mo/CoFeB/MgO tunnel junction with perpendicular magnetic anisotropy , 2015 .

[31]  G. Beach,et al.  Magnetoelectric charge trap memory. , 2012, Nano letters.

[32]  B. Diény,et al.  First-principles investigation of the very large perpendicular magnetic anisotropy at Fe|MgO and Co|MgO interfaces , 2010, 1011.5667.

[33]  T. Liu,et al.  Large enhanced perpendicular magnetic anisotropy in CoFeB/MgO system with the typical Ta buffer replaced by an Hf layer , 2012 .

[34]  R. Wiesendanger,et al.  Electric-field-induced magnetic anisotropy in a nanomagnet investigated on the atomic scale. , 2014, Physical review letters.

[35]  Wei-gang Wang,et al.  Electric-field-assisted switching in magnetic tunnel junctions. , 2012, Nature materials.

[36]  Kang L. Wang,et al.  Temperature dependence of the voltage-controlled perpendicular anisotropy in nanoscale MgO|CoFeB|Ta magnetic tunnel junctions , 2014 .

[37]  Hiroyuki Ohmori,et al.  Spin Torque Switching of Perpendicularly Magnetized CoFeB-Based Tunnel Junctions With High Thermal Tolerance , 2013, IEEE Transactions on Magnetics.

[38]  Shoji Ikeda,et al.  Electric-field effects on magnetic anisotropy and damping constant in Ta/CoFeB/MgO investigated by ferromagnetic resonance , 2014 .

[39]  Yuan Ping Feng,et al.  First principles study of the electric field effect on magnetization and magnetic anisotropy of FeCo/MgO(001) thin film , 2011 .

[40]  Yoichi Shiota,et al.  Large change in perpendicular magnetic anisotropy induced by an electric field in FePd ultrathin films , 2011 .

[41]  T. Liu,et al.  Thermally robust Mo/CoFeB/MgO trilayers with strong perpendicular magnetic anisotropy , 2014, Scientific Reports.

[42]  Yoichi Shiota,et al.  Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. , 2011, Nature materials.

[43]  Hideo Ohno,et al.  Electric-field effects on thickness dependent magnetic anisotropy of sputtered MgO/Co40Fe40B20/Ta structures , 2010 .

[44]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[45]  H. Ohno,et al.  Tunnel magnetoresistance of 604% at 300K by suppression of Ta diffusion in CoFeB∕MgO∕CoFeB pseudo-spin-valves annealed at high temperature , 2008 .

[46]  S. Yuasa,et al.  Perpendicular magnetic anisotropy of Ir/CoFeB/MgO trilayer system tuned by electric fields , 2015 .

[47]  Jin-Pyo Hong,et al.  Highly stable perpendicular magnetic anisotropies of CoFeB/MgO frames employing W buffer and capping layers , 2015 .

[48]  Ilya Krivorotov,et al.  Switching current reduction using perpendicular anisotropy in CoFeB-MgO magnetic tunnel junctions , 2011 .

[49]  D. Worledge,et al.  Impact of Ta Diffusion on the Perpendicular Magnetic Anisotropy of Ta/CoFeB/MgO , 2013, IEEE Magnetics Letters.

[50]  Kang L. Wang,et al.  NONVOLATILE SPINTRONICS: PERSPECTIVES ON INSTANT-ON NONVOLATILE NANOELECTRONIC SYSTEMS , 2012 .