Global anthropogenic tellurium cycles for 1940–2010

[1]  Anna Frebel,et al.  DETECTION OF THE SECOND r-PROCESS PEAK ELEMENT TELLURIUM IN METAL-POOR STARS, , 2012, 1202.2378.

[2]  T. Graedel,et al.  Tracking the metal of the goblins: cobalt's cycle of use. , 2012, Environmental science & technology.

[3]  T. E. Graedel,et al.  Criticality of the geological copper family. , 2012, Environmental science & technology.

[4]  Vasilis Fthenakis,et al.  Photovoltaic manufacturing: Present status, future prospects, and research needs , 2011 .

[5]  M. King,et al.  Selenium and Selenium Compounds , 2010 .

[6]  Daniel Müller,et al.  Tracking the devil's metal: Historical global and contemporary US tin cycles , 2010 .

[7]  E. A. Alsema,et al.  A novel approach for the recycling of thin film photovoltaic modules , 2010 .

[8]  K. Zweibel,et al.  The Impact of Tellurium Supply on Cadmium Telluride Photovoltaics , 2010, Science.

[9]  Vasilis Fthenakis,et al.  Sustainability of photovoltaics: The case for thin-film solar cells , 2009 .

[10]  Karen Hagelstein,et al.  Globally sustainable manganese metal production and use. , 2009, Journal of environmental management.

[11]  Lars Järup,et al.  Current status of cadmium as an environmental health problem. , 2009, Toxicology and applied pharmacology.

[12]  Vasilis Fthenakis,et al.  Life cycle inventory analysis of the production of metals used in photovoltaics , 2009 .

[13]  A Paul Alivisatos,et al.  Materials availability expands the opportunity for large-scale photovoltaics deployment. , 2009, Environmental science & technology.

[14]  Matthias Wuttig,et al.  Reversible switching in phase-change materials , 2008 .

[15]  Daniel B Müller,et al.  Anthropogenic nickel cycle: insights into use, trade, and recycling. , 2008, Environmental science & technology.

[16]  Hyung Chul Kim,et al.  Emissions from photovoltaic life cycles. , 2008, Environmental science & technology.

[17]  A. Feltrin,et al.  Material considerations for terawatt level deployment of photovoltaics , 2008 .

[18]  Daniel B Müller,et al.  Forging the anthropogenic iron cycle. , 2007, Environmental science & technology.

[19]  M. Green Improved estimates for Te and Se availability from Cu anode slimes and recent price trends , 2006 .

[20]  Robert B. Gordon,et al.  The Multilevel Cycle of Anthropogenic Zinc , 2005 .

[21]  A Dennis Lemly,et al.  Aquatic selenium pollution is a global environmental safety issue. , 2004, Ecotoxicology and environmental safety.

[22]  Vasilis Fthenakis,et al.  Life cycle impact analysis of cadmium in CdTe PV production , 2004 .

[23]  T E Graedel,et al.  Multilevel cycle of anthropogenic copper. , 2004, Environmental science & technology.

[24]  J. E. Oldfield,et al.  Tellurium and Tellurium Compounds , 2001 .

[25]  Vasilis Fthenakis,et al.  End-of-life management and recycling of PV modules , 2000 .

[26]  J. Hoffmann Selenium and tellurium—rare but ubiquitous , 1989 .

[27]  J. Gramels,et al.  Selenium rectifiers — Factors in their application , 1953 .

[28]  R. Rudnick,et al.  Composition of the Continental Crust , 2014 .

[29]  Tzimas Evangelos,et al.  Critical Metals in Strategic Energy Technologies - Assessing Rare Metals as Supply-Chain Bottlenecks in Low-Carbon Energy Technologies , 2011 .

[30]  D. Bleiwas Byproduct mineral commodities used for the production of photovoltaic cells , 2010 .

[31]  David J. Wilson,et al.  Regulatory policy governing cadmium-telluride photovoltaics: A case study contrasting life cycle management with the precautionary principle , 2008 .

[32]  P. Laihonen,et al.  Environmental effects of nationwide selenium fertilization in Finland , 2007, Biological Trace Element Research.

[33]  Björn A. Andersson Materials availability for large-scale thin-film photovoltaics , 2000 .

[34]  S. Skowronski,et al.  Selenium and Tellurium , 1932 .