Coupling and guided propagation along parallel chains of plasmonic nanoparticles

We derive a dynamic closed-form dispersion relation for the analysis of the entire spectrum of guided wave propagation along coupled parallel linear arrays of plasmonic nanoparticles, operating as optical 'two-line' waveguides. Compared to linear arrays of nanoparticles, our results suggest that these waveguides may support more confined beams with comparable or even longer propagation lengths, operating analogously to transmission-line segments at lower frequencies. Our formulation fully takes into account the entire dynamic interaction among the infinite number of nanoparticles composing the parallel arrays, considering also the realistic presence of losses and the frequency dispersion of the involved plasmonic materials, providing physical insights into the guidance properties that characterize this geometry.

[1]  R. Collin Antenna theory , 1969 .

[2]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[3]  Leonard Lewin,et al.  Polylogarithms and Associated Functions , 1981 .

[4]  A. Morimoto,et al.  Guiding of a one-dimensional optical beam with nanometer diameter. , 1997, Optics letters.

[5]  F. Aussenegg,et al.  Electromagnetic energy transport via linear chains of silver nanoparticles. , 1998, Optics letters.

[6]  Sergei A. Tretyakov,et al.  Line of periodically arranged passive dipole scatterers , 2000 .

[7]  Harry A. Atwater,et al.  Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit , 2000 .

[8]  Harry A. Atwater,et al.  Electromagnetic energy transport along arrays of closely spaced metal rods as an analogue to plasmonic devices , 2001 .

[9]  Resonance shift effects in apertureless scanning near-field optical microscopy , 2002, cond-mat/0208481.

[10]  Stephen K. Gray,et al.  Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders , 2003 .

[11]  Harry A. Atwater,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[12]  R. Shore,et al.  Travelling electromagnetic waves on linear periodic arrays of lossless spheres , 2005 .

[13]  Arthur D. Yaghjian,et al.  Traveling Electromagnetic Waves on Linear Periodic Arrays of Lossless Penetrable Spheres , 2005, IEICE Trans. Commun..

[14]  Andrea Alù,et al.  Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. , 2004, Physical review letters.

[15]  Sergei A. Tretyakov,et al.  Metawaveguides formed by arrays of small resonant particles over a ground plane , 2005 .

[16]  A. Polman,et al.  Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains , 2005, cond-mat/0512187.

[17]  Nader Engheta,et al.  Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines , 2006 .

[18]  Nader Engheta,et al.  Optical nanotransmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes , 2006, physics/0603052.

[19]  Nader Engheta,et al.  Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials , 2007, Science.

[20]  N. Engheta,et al.  Anomalies of subdiffractive guided wave propagation along metamaterial nanocomponents , 2007 .

[21]  A. Koenderink Plasmon nanoparticle array waveguides for single photon and single plasmon sources. , 2009, Nano letters.

[22]  Andrea Alù,et al.  Guided propagation along quadrupolar chains of plasmonic nanoparticles , 2009 .

[23]  Parallel-chain optical transmission line for a low-loss ultraconfined light beam , 2009 .

[24]  Comparison of Waveguiding Properties of Plasmonic Voids and Plasmonic Waveguides , 2010 .

[25]  Andrea Alù,et al.  Effect of small random disorders and imperfections on the performance of arrays of plasmonic nanoparticles , 2010 .

[26]  Andrea Alù,et al.  Subwavelength leaky-wave optical nanoantennas: Directive radiation from linear arrays of plasmonic nanoparticles , 2010 .

[27]  Andrea Alù,et al.  Erratum: Circuit elements at optical frequencies: Nanoinductors, nanocapacitors, and nanoresistors (Physical Review Letters (2005) 95 (095504)) , 2011 .