Experimental results of an ammonia-water mixture turbine system

This paper is an additional report to the paper by Amano (2001). In this paper, the authors report the additional experimental results of the effect of an ammonia mass fraction at the inlet of the AWM (Ammonia-Water Mixture) vapor generator in the AWM turbine system. The AWM turbine system features the Kalina Cycle technology. The 70KW-experimental facility was built in order to gain knowledge for practical applications. The heat source is the exhaust steam from a back-pressure steam turbine. The AWM turbine system is installed at the bottoming stage of a combined cycle which has a gas turbine, a steam turbine and an AWM turbine for cascade utilization of heat. The authors designed and constructed an experimental facility, the ACGS (the Advanced Co-Generation System), to investigate various energy-saving technologies for a distributed energy supply system in the Advanced Research Institute for Science and Engineering at Waseda University. One of the main targets is a hybrid combined heat and power supply system that uses AWM as its working fluid. The AWM turbine system was developed for the bottoming stage of a “trinary turbine cycle system” which is composed of a gas turbine, a steam turbine and the AWM turbine systems. The experimental results of the ammonia mass fraction to the cycle efficiency are investigated with a range of the ammonia mass fraction between 0.4 [NH3 kg/kg] to 0.7 [NH3 kg/kg]. It shows that there are optimal operating conditions depending on the heat source temperature with an ammonia mass fraction of the cycle. The simulation model of the AWM turbine system shows good agreement with the experimental data.Copyright © 2002 by ASME