High CO tolerance of new SiO2 doped phosphoric acid/polybenzimidazole polymer electrolyte membrane fuel cells at high temperatures of 200–250 °C

[1]  S. Jiang,et al.  High Temperature Polymer Electrolyte Membrane Fuel Cells for Integrated Fuel Cell – Methanol Reformer Power Systems: A Critical Review , 2018 .

[2]  D. Mathew,et al.  Polybenzimidazole-nanocomposite membranes: Enhanced proton conductivity with low content of amine-functionalized nanoparticles , 2018, Polymer.

[3]  F. J. Pinar,et al.  Long‐term Operation of High Temperature Polymer Electrolyte Membrane Fuel Cells with Fuel Composition Switching and Oxygen Enrichment , 2018 .

[4]  Hsiu-Li Lin,et al.  Effects of mesoporous fillers on properties of polybenzimidazole composite membranes for high-temperature polymer fuel cells , 2018 .

[5]  D. Wang,et al.  A hamburger-structure imidazolium-modified silica/polyphenyl ether composite membrane with enhancing comprehensive performance for anion exchange membrane applications , 2018 .

[6]  L. Cleemann,et al.  Long-Term Durability of PBI-Based HT-PEM Fuel Cells: Effect of Operating Parameters , 2018 .

[7]  Hong Zhu,et al.  Enhanced performance of ionic-liquid-coated silica/quaternized poly(2,6-dimethyl-1,4-phenylene oxide) composite membrane for anion exchange membrane fuel cells , 2017 .

[8]  Samuel Simon Araya,et al.  Impedance characterization of high temperature proton exchange membrane fuel cell stack under the influence of carbon monoxide and methanol vapor , 2017 .

[9]  Lili Lin,et al.  Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts , 2017, Nature.

[10]  San Ping Jiang,et al.  Prospects of Fuel Cell Technologies , 2017 .

[11]  D. Aili,et al.  Long-term durability of HT-PEM fuel cells based on thermally cross-linked polybenzimidazole , 2017 .

[12]  Hong Zhu,et al.  Cobaltocenium-containing polybenzimidazole polymers for alkaline anion exchange membrane applications , 2017 .

[13]  S. Jiang,et al.  In Situ Formed Phosphoric Acid/Phosphosilicate Nanoclusters in the Exceptional Enhancement of Durability of Polybenzimidazole Membrane Fuel Cells at Elevated High Temperatures , 2017 .

[14]  I. Eroglu,et al.  Polybenzimidazole/SiO2 hybrid membranes for high temperature proton exchange membrane fuel cells , 2016 .

[15]  Z. Chen,et al.  Controlling activity and selectivity using water in the Au-catalysed preferential oxidation of CO in H2. , 2016, Nature chemistry.

[16]  S. Jiang,et al.  Exceptional durability enhancement of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200 °C , 2016 .

[17]  E. Quartarone,et al.  Influence of variously functionalized SBA-15 fillers on conductivity and electrochemical properties of PBI composite membranes for high temperature polymer fuel cells , 2015 .

[18]  H. Ju,et al.  Temperature dependence of CO poisoning in high-temperature proton exchange membrane fuel cells with phosphoric acid-doped polybenzimidazole membranes , 2015 .

[19]  K. Vezzù,et al.  Nanocomposite membranes based on polybenzimidazole and ZrO2 for high-temperature proton exchange membrane fuel cells. , 2015, ChemSusChem.

[20]  K. Vezzù,et al.  Interplay between Composition, Structure, and Properties of New H3PO4-Doped PBI4N–HfO2 Nanocomposite Membranes for High-Temperature Proton Exchange Membrane Fuel Cells , 2015 .

[21]  F. Büchi,et al.  Correlating Electrolyte Inventory and Lifetime of HT-PEFC by Accelerated Stress Testing , 2015 .

[22]  T. Jana,et al.  Structure and properties of polybenzimidazole/silica nanocomposite electrolyte membrane: influence of organic/inorganic interface. , 2014, ACS applied materials & interfaces.

[23]  Samuel Simon Araya,et al.  Performance and endurance of a high temperature PEM fuel cell operated on methanol reformate , 2014 .

[24]  R. Savinell,et al.  The Electrochemical Behavior of Phosphoric-Acid-Doped Poly(perfluorosulfonic Acid) Membranes , 2014 .

[25]  Suthida Authayanun,et al.  Effect of different fuel options on performance of high-temperature PEMFC (proton exchange membrane fuel cell) systems , 2014 .

[26]  Yuka Oono,et al.  Prolongation of lifetime of high temperature proton exchange membrane fuel cells , 2013 .

[27]  Mina Hoorfar,et al.  Study of proton exchange membrane fuel cells using electrochemical impedance spectroscopy technique – A review , 2013 .

[28]  S. Tsang,et al.  Non-syngas direct steam reforming of methanol to hydrogen and carbon dioxide at low temperature , 2012, Nature Communications.

[29]  N. Kim,et al.  Poly(2,5-benzimidazole)–silica nanocomposite membranes for high temperature proton exchange membrane fuel cell , 2012 .

[30]  Y. Oono,et al.  Long-term cell degradation mechanism in high-temperature proton exchange membrane fuel cells , 2012 .

[31]  Yung Chang,et al.  Polybenzimidazole (PBI)-functionalized silica nanoparticles modified PBI nanocomposite membranes for proton exchange membranes fuel cells , 2012 .

[32]  Piercarlo Mustarelli,et al.  Polymer fuel cells based on polybenzimidazole/H3PO4 , 2012 .

[33]  Frederik C. Krebs,et al.  Roll-to-roll coated PBI membranes for high temperature PEM fuel cells , 2012 .

[34]  Hongwei Zhang,et al.  Advances in the high performance polymer electrolyte membranes for fuel cells. , 2012, Chemical Society reviews.

[35]  G. Qian,et al.  Fuel Impurity Effects on High Temperature PBI Based Fuel Cell Membranes , 2011 .

[36]  T. Jana,et al.  Polybenzimidazole/silica nanocomposites: Organic-inorganic hybrid membranes for PEM fuel cell , 2011 .

[37]  P. Cañizares,et al.  A novel titanium PBI-based composite membrane for high temperature PEMFCs , 2011 .

[38]  Hassan Namazi,et al.  Improving the proton conductivity and water uptake of polybenzimidazole-based proton exchange nanoco , 2011 .

[39]  S. Jiang,et al.  Highly ordered mesoporous Nafion membranes for fuel cells. , 2011, Chemical communications.

[40]  Xianguo Li,et al.  Three-dimensional non-isothermal modeling of carbon monoxide poisoning in high temperature proton exchange membrane fuel cells with phosphoric acid doped polybenzimidazole membranes , 2011 .

[41]  Adélio Mendes,et al.  Catalysts for methanol steam reforming—A review , 2010 .

[42]  A. Matsuda,et al.  Inorganic–organic composite electrolytes consisting of polybenzimidazole and Cs-substituted heteropoly acids and their application for medium temperature fuel cells , 2010 .

[43]  J. Scholta,et al.  Long‐Term Testing in Dynamic Mode of HT‐PEMFC H3PO4/PBI Celtec‐P Based Membrane Electrode Assemblies for Micro‐CHP Applications , 2010 .

[44]  Y. Oono,et al.  Influence of operating temperature on cell performance and endurance of high temperature proton exchange membrane fuel cells , 2010 .

[45]  H. Pu,et al.  Organic/inorganic composite membranes based on polybenzimidazole and nano-SiO2 , 2009 .

[46]  Robert F. Savinell,et al.  High temperature proton exchange membranes based on polybenzimidazoles for fuel cells , 2009 .

[47]  K. Tadanaga,et al.  Structural change and proton conductivity of phosphosilicate gel–polyimide composite membrane for a fuel cell operated at 180 °C , 2008 .

[48]  K. Scott,et al.  A high conductivity Cs2.5H0.5PMo12O40/polybenzimidazole (PBI)/H3PO4 composite membrane for proton-exchange membrane fuel cells operating at high temperature , 2008 .

[49]  Brian C. Benicewicz,et al.  Durability Studies of PBI‐based High Temperature PEMFCs , 2008 .

[50]  Thomas J. Schmidt,et al.  Properties of high-temperature PEFC Celtec®-P 1000 MEAs in start/stop operation mode , 2008 .

[51]  Brian C. Benicewicz,et al.  Polybenzimidazole/Acid Complexes as High-Temperature Membranes , 2008 .

[52]  Brant A. Peppley,et al.  Integrated fuel processors for fuel cell application : A review , 2007 .

[53]  David P. Wilkinson,et al.  High temperature PEM fuel cells , 2006 .

[54]  Parthasarathy M. Gomadam,et al.  Analysis of electrochemical impedance spectroscopy in proton exchange membrane fuel cells , 2005 .

[55]  Ronghuan He,et al.  Integration of high temperature PEM fuel cells with a methanol reformer , 2005 .

[56]  T. Abe,et al.  Proton-Conductive Electrolyte Consisting of NH 4 PO 3 / TiP2 O 7 for Intermediate-Temperature Fuel Cells , 2005 .

[57]  Jesse S. Wainright,et al.  Conductivity of PBI Membranes for High-Temperature Polymer Electrolyte Fuel Cells , 2004 .

[58]  Qingfeng Li,et al.  Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C , 2003 .

[59]  Ronghuan He,et al.  The CO Poisoning Effect in PEMFCs Operational at Temperatures up to 200°C , 2003 .

[60]  Lei Zhang,et al.  An investigation of proton conduction in select PEM’s and reaction layer interfaces-designed for elevated temperature operation , 2003 .

[61]  K. Tadanaga,et al.  Proton conductivities of sol–gel derived phosphosilicate gels in medium temperature range with low humidity , 2002 .

[62]  Xianguo Li,et al.  Carbon monoxide poisoning of proton exchange membrane fuel cells , 2001 .

[63]  Mariana Ciureanu and,et al.  Electrochemical Impedance Study of PEM Fuel Cells. Experimental Diagnostics and Modeling of Air Cathodes , 2001 .

[64]  Volkmar M. Schmidt,et al.  Performance Data of a Proton Exchange Membrane Fuel Cell Using H 2 / CO as Fuel Gas , 1996 .

[65]  C. Gardner,et al.  Studies on ion-exchange membranes. Part 1. Effect of humidity on the conductivity of Nafion® , 1996 .

[66]  N. Bjerrum,et al.  Hydrogen Oxidation on Gas Diffusion Electrodes for Phosphoric Acid Fuel Cells in the Presence of Carbon Monoxide and Oxygen , 1995 .

[67]  Jesse S. Wainright,et al.  Acid-doped polybenzimidazoles : a new polymer electrolyte , 1995 .

[68]  R. Savinell,et al.  A Polymer Electrolyte for Operation at Temperatures up to 200°C , 1994 .